​This model has been constructed from the model published in the following article:  Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control".    System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:
Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control". 
System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
A simulation of a general epidemic in France. Its main goal is to study the efficiency of a vaccination campaign.
A simulation of a general epidemic in France. Its main goal is to study the efficiency of a vaccination campaign.
​This model has been constructed from the model published in the following article:  Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control".    System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:
Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control". 
System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
 A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

​This model has been constructed from the model published in the following article:  Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control".    System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:
Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control". 
System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
 This model was developed as part of the curriculum development for a short introductory course on systems dynamics modelling for health system analysts. This is the fourth and final developmental component of Module 2. The population progression through health states is complete
This model was developed as part of the curriculum development for a short introductory course on systems dynamics modelling for health system analysts.
This is the fourth and final developmental component of Module 2. The population progression through health states is complete

​This model has been constructed from the model published in the following article:  Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control".    System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:
Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control". 
System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:  Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control".    System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:
Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control". 
System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
Health Services System Map of Mildura region
Health Services System Map of Mildura region
  Overview:   Overall, this analysis showed a COVID-19 outbreak in Burnie, the government policies to curtail that, and some of the impacts it is having on the Burnie economy.      Variables   The simulation made use of the variables such as; Covid-19: (1): Infection rate. (2): Recovery rate. (3): D

Overview:

Overall, this analysis showed a COVID-19 outbreak in Burnie, the government policies to curtail that, and some of the impacts it is having on the Burnie economy.


Variables

The simulation made use of the variables such as; Covid-19: (1): Infection rate. (2): Recovery rate. (3): Death rate. (4): Immunity loss rate etc. 


Assumptions:

From the model, it is apparent that government health policies directly affect the economic output of Burnie. A better health policy has proven to have a better economic condition for Burnie and verse versa.


In the COVID-19 model, some variables are set at fixed rates, including the immunity loss rate, recovery rate, death rate, infection rate, and case impact rate, as this is normally influenced by the individual health conditions and social activities.

Moving forward, we decided to set the recovery rate to 0.7, which is a rate above the immunity loss rate of 0.5, so, the number of susceptible could be diminished over time.


Step 1: Try to set all value variables at their lowest point and then stimulate. 

 

Outcome: the number of those Infected are– 135; Recovered – 218; Cases – 597; Death – 18,175; GDP – 10,879.


Step 2: Try to increase the variables of Health Policy, Quarantine, and Travel Restriction to 0.03, others keep the same as step 1, and simulate


Outcome: The number of those Infected – 166 (up); Recovered – 249 (up); Cases – 554 (down); Death – 18,077 (down); GDP – 824 (down).


With this analysis, it is obvious that the increase of health policy, quarantine, and travel restriction will assist in increase recovery rate, a decrease in confirmed cases, a reduction in death cases or fatality rate, but a decrease in Burnie GDP.


Step 3: Enlarge the Testing Rate to 0.4, variable, others, maintain the same as step 2, and simulate


Outcome: It can be seen that the number of Infected is down to – 152; those recovered down to – 243; overall cases up to – 1022; those that died down to–17,625; while the GDP remains – 824.


In this step, it is apparent that the increase of testing rate will assist to increase the confirmed cases.


Step 4: Try to change the GDP Growth Rate to 0.14, then Tourism Growth Rate to 0.02, others keep the same as step 3, and then simulate the model


Outcome: what happens is that the Infected number – 152 remains the same; Recovered rate– 243 the same; Number of Cases – 1022 (same); Death – 17,625 (same); but the GDP goes up to– 6,632. 


This final step made it obvious that the increase of GDP growth rate and tourism growth rate will help to improve the overall GDP performance of Burnie's economy.

​This model has been constructed from the model published in the following article:  Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control".    System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:
Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control". 
System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:  Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control".    System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:
Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control". 
System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:  Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control".    System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:
Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control". 
System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:  Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control".    System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:
Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control". 
System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:  Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control".    System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:
Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control". 
System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
This is a model of a payment system geared toward better fostering prevention oriented programming, using the example of type 2 diabetes.
This is a model of a payment system geared toward better fostering prevention oriented programming, using the example of type 2 diabetes.