This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries,  et al . in  A Course in Mathematical Biology.    They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that different
This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries, et al. in A Course in Mathematical Biology.

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries,  et al . in  A Course in Mathematical Biology.    They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that different
This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries, et al. in A Course in Mathematical Biology.

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters .   We're rescaled this SIR model, so that time is given in infection rate-appropriate time units,
This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters.

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

This model is for BME 1300, where we have to model an infectious disease, in this case, a zombie virus: Rage.
This model is for BME 1300, where we have to model an infectious disease, in this case, a zombie virus: Rage.
 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
4 months ago
This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters .   We're rescaled this SIR model, so that time is given in infection rate-appropriate time units,
This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters.

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries,  et al . in  A Course in Mathematical Biology.    They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that different
This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries, et al. in A Course in Mathematical Biology.

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters .   We're rescaled this SIR model, so that time is given in infection rate-appropriate time units,
This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters.

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

 Spring, 2020:       With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured in   https://www.maa.org/press/periodicals/loci/joma/the-sir-mod
Spring, 2020:

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-6, we recover their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
7 months ago
This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries,  et al . in  A Course in Mathematical Biology.    They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that different
This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries, et al. in A Course in Mathematical Biology.

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries,  et al . in  A Course in Mathematical Biology.    They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that different
This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries, et al. in A Course in Mathematical Biology.

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters .   We're rescaled this SIR model, so that time is given in infection rate-appropriate time units,
This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters.

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters .   We're rescaled this SIR model, so that time is given in infection rate-appropriate time units,
This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters.

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters .   We're rescaled this SIR model, so that time is given in infection rate-appropriate time units,
This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters.

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries,  et al . in  A Course in Mathematical Biology.    They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that different
This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries, et al. in A Course in Mathematical Biology.

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
 Modelo epidemiológico simples   SIR: Susceptíveis - Infectados - Recuperados        Dados iniciais do Brasil em 04 Abr 2020    Fonte:   https://www.worldometers.info/coronavirus/country/brazil/
Modelo epidemiológico simples
SIR: Susceptíveis - Infectados - Recuperados

Dados iniciais do Brasil em 04 Abr 2020
This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries,  et al . in  A Course in Mathematical Biology.    They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that different
This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries, et al. in A Course in Mathematical Biology.

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters .   We're rescaled this SIR model, so that time is given in infection rate-appropriate time units,
This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters.

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

 Modelo epidemiológico simples   SIR: Susceptíveis - Infectados - Recuperados        Dados iniciais do Brasil em 04 Abr 2020    Fonte:   https://www.worldometers.info/coronavirus/country/brazil/
Modelo epidemiológico simples
SIR: Susceptíveis - Infectados - Recuperados

Dados iniciais do Brasil em 04 Abr 2020
 Modelo epidemiológico simples   SIR: Susceptíveis - Infectados - Recuperados        Dados iniciais do Brasil em 04 Abr 2020    Fonte:   https://www.worldometers.info/coronavirus/country/brazil/
Modelo epidemiológico simples
SIR: Susceptíveis - Infectados - Recuperados

Dados iniciais do Brasil em 04 Abr 2020