This simple model is derived from   D.H. Meadows, Thinking in Systems  chapter 2, figures 27 and 28.  It is designed to explain and demonstrate how the economic system is driven by both an amplifying feedback loop (shown in blue) and a stabilizing feedback loop (shown in red).
This simple model is derived from  D.H. Meadows, Thinking in Systems chapter 2, figures 27 and 28.  It is designed to explain and demonstrate how the economic system is driven by both an amplifying feedback loop (shown in blue) and a stabilizing feedback loop (shown in red).
 This
paper aims at describing a case where system dynamics modeling was used to evaluate
the effects of information and material supply lead-time variation on sales
contributions margins and operating cash conversion cycle of a commodity export
business.  An empirical dynamic model,
loaded with eco

This paper aims at describing a case where system dynamics modeling was used to evaluate the effects of information and material supply lead-time variation on sales contributions margins and operating cash conversion cycle of a commodity export business.  An empirical dynamic model, loaded with econometric theory of price effect on competitive demand, was used to describe the input data.  The model simulation outputs proved themselves relevant in analyzing the complex interconnections of multiple variables affecting  the profitability in a commercial routine, supporting the decision process among sales managers.

Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
This model analyzes the interaction between climate change mitigation and adaptation in the land use sector using the concept of forest transition as a framework.
This model analyzes the interaction between climate change mitigation and adaptation in the land use sector using the concept of forest transition as a framework.
   THE 2020 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.  WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER R

THE 2020 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.
WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

  Overview  The model simulates how logging in with tourism(mountain biking) in Derby Tasmania.   How the model works.   Trees grow, loggers cut them in order to sell them because of demand for Timber.  Mountain cyclist depends on satisfaction and expectation.  Satisfaction and Expectation depends o
Overview
The model simulates how logging in with tourism(mountain biking) in Derby Tasmania.
How the model works.
Trees grow, loggers cut them in order to sell them because of demand for Timber.
Mountain cyclist depends on satisfaction and expectation.  Satisfaction and Expectation depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  Local Business is influenced by the timber and number of Mountain Cyclist. Employment is influenced by the number of mountain cyclist and logging activity.

 
			 
				 
					 From Oatley 2014 p214++   Balance-of-Payments Adjustment
  
					 Even though the current and capital accounts must balance each other, there
is no assurancethat the millions of international transactions that individu-
als, businesses, and governments conduct every year will nece

From Oatley 2014 p214++

Balance-of-Payments Adjustment

Even though the current and capital accounts must balance each other, there is no assurancethat the millions of international transactions that individu- als, businesses, and governments conduct every year will necessarily produce this balance. When they don’t, the country faces an imbalance of payments. A country might have a current-accountdeficit that it cannotfully finance throughcapital imports, for example, or it might have a current-accountsur- plus thatis not fully offset by capital outflows. When an imbalancearises, the country must bring its payments back into balance. The process by which a country doessois called balance-of-payments adjustment. Fixed and floating exchange-rate systems adjust imbalances indifferent ways.

In a fixed exchange-rate system, balance-of-payments adjustment occurs through changes in domestic prices. We can most readily understand this ad- justmentprocess through a simple example. Suppose there are only two coun- tries in the world—the United States and Japan—and supposefurther that they maintain a fixed exchange rate according to which $1 equals 100 yen. The United States has purchased 800 billion yen worth of goods, services, and financial assets from Japan, and Japanhas purchased $4 billion of items from the United States. Thus, the United States has a deficit, and Japan a surplus, of $4billion. 

This payments imbalance creates an imbalance between the supply of and the demandfor the dollar and yen in the foreign exchange market. American residents need 800 billion yen to pay for their imports from Japan. They can acquirethis 800 billion yen by selling $8 billion. Japanese residents need only $4 billion to pay for their imports from the United States. They can acquire the $4 billion by selling 400billion yen. Thus, Americanresidentsareselling $4 billion more than Japanese residents want to buy, and the dollar depreci- ates againstthe yen.

Because the exchangerateis fixed, the United States and Japan must prevent this depreciation. Thus, both governmentsintervenein the foreign exchange market, buying dollars in exchange for yen. Intervention has two consequences.First, it eliminates the imbalance in the foreign exchange mar- ket as the governments provide the 400billion yen that American residents need in exchange forthe $4 billion that Japanese residents do not want. With the supply of each currency equalto the demandin the foreign exchange mar- ket, the fixed exchangerate is sustained. Second, intervention changes each country’s money supply. The American moneysupply falls by $4 billion, and Japan’s moneysupplyincreases by 400billion yen. 

The change in the money supplies alters prices in both countries. The reduc- tion of the U.S. money supply causes Americanpricesto fall. The expansion of the money supply in Japan causes Japanese prices to rise. As American prices fall and Japanese prices rise, American goods becomerelatively less expensive than Japanese goods. Consequently, American and Japaneseresidents shift their purchases away from Japanese products and toward American goods. American imports (and hence Japanese exports) fall, and American exports (and hence Japanese imports) rise. As American imports (and Japanese exports) fall and American exports (and Japanese imports) rise, the payments imbalanceis elimi- nated. Adjustment underfixed exchange rates thus occurs through changesin the relative price of American and Japanese goods brought about by the changes in moneysupplies caused by intervention in the foreign exchange market.

In floating exchange-rate systems, balance-of-payments adjustment oc- curs through exchange-rate movements. Let’s go back to our U.S.—Japan sce- nario, keeping everything the same, exceptthis time allowing the currencies to float rather than requiring the governments to maintain a fixed exchangerate. Again,the $4 billion payments imbalance generates an imbalancein the for- eign exchange market: Americansare selling more dollars than Japanese resi- dents want to buy. Consequently, the dollar begins to depreciate against the yen. Because the currencies are floating, however, neither governmentinter- venesin the foreign exchange market. Instead, the dollar depreciates until the marketclears. In essence, as Americans seek the yen they need, they are forced to accept fewer yen for each dollar. Eventually, however, they will acquire all of the yen they need, but will have paid more than $4 billion for them.

The dollar’s depreciation lowers the price in yen of American goods and services in the Japanese market andraises the price in dollars of Japanese goodsandservices in the American market. A 10 percent devaluation of the dollar against the yen, for example, reduces the price that Japanese residents pay for American goods by 10 percentandraises the price that Americans pay for Japanese goods by 10 percent. By making American products cheaper and Japanese goods more expensive, depreciation causes American imports from Japan to fall and American exports to Japan to rise. As American exports expand and importsfall, the payments imbalanceis corrected.

In both systems, therefore, a balance-of-payments adjustment occurs as prices fall in the country with the deficit and rise in the country with the surplus. Consumers in both countries respond to these price changes by purchasing fewer of the now-more-expensive goods in the country with the surplus and more of the now-cheaper goodsin the country with the deficit. These shifts in consumption alter imports and exports in both countries, mov- ing each of their payments back into balance. The mechanism that causes these price changes is different in each system, however. In fixed exchange- rate systems, the exchange rate remains stable and price changes are achieved by changing the moneysupplyin orderto alter prices inside the country. In floating exchange-rate systems, internal prices remain stable, while the change in relative prices is brought about through exchange-rate movements.

Contrasting the balance of payments adjustment process under fixed and floating exchangerates highlights the trade off that governments face between

exchangerate stability and domestic price stability: Governments can have a stable fixed exchangerate or they can stabilize domestic prices, but they cannotachieve both goals simultaneously. If a government wants to maintain a fixed exchangerate, it must accept the occasional deflation and inflation caused by balance-of-payments adjustment. If a governmentis unwilling to accept such price movements,it cannot maintain a fixed exchangerate. This trade-off has been the central factor driving the international monetary system toward floating exchange rates during the last 100 years. We turn now to examine howthis trade-off first led governmentsto create innovativeinter- national monetary arrangements following World WarII and then caused the system to collapse into a floating exchange-rate system in the early 1970s. 

国連が公表している人口の将来推計とOECDが公表している各種経済統計を参考にして、2000年から2100年までの人口・経済見通しを作成するためのダイナミクスモデル。     ①人口:年少(0-14歳)・再生産年齢人口(15-49歳)・後期生産年齢人口(50-64歳)・老年人口(65歳以上)にグループ分けし、出生数(再生産年齢人口×出生率)と死亡数(年代別死亡率×年代別人口の合計)を算出して総人口を推計     ②経済:2000年のGDPをストックとして、コブ=ダグラス型関数に基づき労働力人口(15歳以上人口×労働参加率)と資本ストック(総固定資本形成)および全要素生産性の成長率をフローとし、購
国連が公表している人口の将来推計とOECDが公表している各種経済統計を参考にして、2000年から2100年までの人口・経済見通しを作成するためのダイナミクスモデル。

①人口:年少(0-14歳)・再生産年齢人口(15-49歳)・後期生産年齢人口(50-64歳)・老年人口(65歳以上)にグループ分けし、出生数(再生産年齢人口×出生率)と死亡数(年代別死亡率×年代別人口の合計)を算出して総人口を推計

②経済:2000年のGDPをストックとして、コブ=ダグラス型関数に基づき労働力人口(15歳以上人口×労働参加率)と資本ストック(総固定資本形成)および全要素生産性の成長率をフローとし、購買力平価レートの変化率も加味して将来のGDP(購買力平価換算)を算出

現状投影シナリオ:2000年から2100年までに制度や前提条件の極端な変更はなく、現状のトレンドが続くと想定される場合
Map of SD work on Samuelson's 1939 model of the business cycle. See also D-memo D-2311-2 Gilbert Low 1976 and  IM-165713 . An alernative to the Ch 26 Macroeconomics textbook exposition.  From Gil Low's Multiplier Accelerator Model of Business Cycles, Ch 4 of Elements of the System Dynamics Method Bo
Map of SD work on Samuelson's 1939 model of the business cycle. See also D-memo D-2311-2 Gilbert Low 1976 and IM-165713. An alernative to the Ch 26 Macroeconomics textbook exposition.  From Gil Low's Multiplier Accelerator Model of Business Cycles, Ch 4 of Elements of the System Dynamics Method Book edited by Jorgen Randers 1976 (MIT Press) and 1980 (Productivity Press)
This model demonstrate how the exisitng tested COVID cases effects economic recovery via goverment intervenes. Assumption:Goverment intervenes positively contribute on transmission, patients recovery, and death elimination. When existing cases equal or lower than 10 cases, economic growth will be so
This model demonstrate how the exisitng tested COVID cases effects economic recovery via goverment intervenes.
Assumption:Goverment intervenes positively contribute on transmission, patients recovery, and death elimination. When existing cases equal or lower than 10 cases, economic growth will be soaring with helps of influencial elements.
Interesting points: even though there are certain amount of unknow cases, enhancing social restriction and increasing test rate ould still reduce amount of cases
 A Numeric Logic Model than can model the impact of Prevention and Costs ​.  It can also be used for any Public Health, Health or Social Care Area
A Numeric Logic Model than can model the impact of Prevention and Costs​.
It can also be used for any Public Health, Health or Social Care Area
Social determinants of health are economic and social conditions that influence the health of people and communities. These conditions are shaped by the amount of money, power, and resources that people have, all of which are influenced by policy choices. Social determinants of health affect factors
Social determinants of health are economic and social conditions that influence the health of people and communities. These conditions are shaped by the amount of money, power, and resources that people have, all of which are influenced by policy choices. Social determinants of health affect factors that are related to health outcomes. Factors related to health outcomes include:
  • How a person develops during the first few years of life (early childhood development)
  • How much education a persons obtains
  • Being able to get and keep a job
  • What kind of work a person does
  • Having food or being able to get food (food security)
  • Having access to health services and the quality of those services
  • Housing status
  • How much money a person earns
  • Discrimination and social support