Modern industrial civilisation has created massive
interdependencies which define it and without which it could not function. We all
depend on industrial farming to produce the food we eat, we depend on gasoline
being available at the gas station,  on the
availability of electricity and even on the

Modern industrial civilisation has created massive interdependencies which define it and without which it could not function. We all depend on industrial farming to produce the food we eat, we depend on gasoline being available at the gas station,  on the availability of electricity and even on the bread supplied by the local baker. Naturally, we tend to support the institutions that supply the amenities and goods to which we have become accustomed: if we get our food from the local supermarket, it is likely that we would be opposed to it’s closure. This means that the economic system that relies on continuous growth enjoys implicit societal support and that nothing short of environmental disaster or a shortage of essential raw materials will impede it’s growing indefinitely. It is not hard to work out the consequences of this situation!

Model-SIM from Chapter 3 of Wynn Godley and Marc Lavoie's  Monetary Economics,  adapted for an open economy. The model is stock-flow consistent with only government money--no bills or bonds. No central bank and interest rates do not change. Government spends buying output from the production sector.
Model-SIM from Chapter 3 of Wynn Godley and Marc Lavoie's Monetary Economics, adapted for an open economy. The model is stock-flow consistent with only government money--no bills or bonds. No central bank and interest rates do not change. Government spends buying output from the production sector. The production sector is passive turning over all revenue over to households. Households save out of income and spend partially spend out of wealth. Imports and exports pass through the production sector illustrating the idea that consumer households buy from domestic businesses that which they have imported. The model also tracks the sectoral balance flows and changes in equity. Sectoral flows and equity balances match each other dollar for dollar to satisfy the sectoral balances accounting identity (Household Saving - Consumption) + (Business Saving - Expenditure) + (Taxes - Government Spending) - (Exports - Imports) = 0. Since business investment occurs internally to the Business Sector, 
7 months ago
This is a first attempt to illustrate the interconnected nature of the economic assets of Roswell - Chaves County
This is a first attempt to illustrate the interconnected nature of the economic assets of Roswell - Chaves County
  ​Climate Sector Boundary Diagram By Guy Lakeman    Climate, Weather, Ecology, Economics, Population, Welfare, Energy, Policy, CO2, Carbon Cycle, GHG (green house gasses, combined effects)      As general population is composed of 85% with an education level of a 12 grader or less (a 17 year old),
​Climate Sector Boundary Diagram By Guy Lakeman
 Climate, Weather, Ecology, Economics, Population, Welfare, Energy, Policy, CO2, Carbon Cycle, GHG (green house gasses, combined effects)

As general population is composed of 85% with an education level of a 12 grader or less (a 17 year old), a simple block of components concerning the health of the planet needs to be broken down into simple blocks.
Perhaps this picture will show the basics on which to vote for a sustained healthy future
Democracy is only as good as the ability of the voters to FULLY understand the implications of the policies on which they vote., both context and the various perspectives.   National voting of unqualified voters on specific policy issues is the sign of corrupt manipulation.

Model shows the U.S. Education System
Model shows the U.S. Education System
Fig 17.15 p700 Causal
structure of commercial real estate markets of Case Study from John Sterman's 2000 Business Dynamics Book 
Fig 17.15 p700 Causal structure of commercial real estate markets of Case Study from John Sterman's 2000 Business Dynamics Book 
 ​BACKGROUND:    The following simulation model demonstrates the relationship between supply, demand and pricing within the real estate and housing world. I have based the model on a small city with a population of 100,000 residents as of 2015.      AXIS:          X-Axis  The X-Axis shows the time.
​BACKGROUND:

The following simulation model demonstrates the relationship between supply, demand and pricing within the real estate and housing world. I have based the model on a small city with a population of 100,000 residents as of 2015. 

AXIS:

X-Axis
The X-Axis shows the time. It begins in 2015 in the month of October and continues for 36 consecutive years. 

Y-Axis
There are 2 Y-Axis on this model. The left hand side relates to the price, demand, and supply, while the right hand side solely lists the population.

As you could see, this town has a population of 100,000 residents to-date. The bottom of the model shows a population loop that produces an exponential growth rate of 2.5%. This dynamic and growing city populates approximately 240,000 residents after 36 years.

MODEL

The model consists of 2 folders named: Buyers/Consumers & Suppliers/Producers. This first folder represents the 'Demand'. It includes a buyers growth rate, buyers interest increase and decrease, a price demand and the demand price. The formulas form an exponential rise in demand due to the rapid and continuous increase in population in this new city. As population increases, so does the demand from buyers. 

The second folder conveys the supply of houses. It includes a sophisticated loop of real estate. Residents who own houses in the market decide to sell the home. This becomes the Houses for sale, also known as the 'supply'. Those houses are sold and the sold houses re-enter the market and the loop continues. 

The supply has an inverse relationship with the price. When prices drop, supplies drop because the demand goes up. And when the price goes up, so does the supply. This will represent the growth of new houses in the market. 

PRICE

Note: The price is based on monthly rent rates.

The price is dependant on many variables. Most importantly, the supply and demand. It also includes factors such as expectations & the economic value of the house. I have included a stable, 'good' economic value for all homes as this fictional town is in a stable and growing area.

Price fluctuates throughout the entire simulation, however it also goes up in price. Over the years houses continue to rise in price while they regularly fluctuate. For example, in 2018 (3 years later), the max price for a home was: $4254.7 and min price was: $852.98. On the other hand, in October 2051 (36 years later), the max price was: $14906 and the min price was: $7661. (This is based on the following data: Houses for Sale: 500, Houses that have sold: 100, Houses in the Market: 730).

SLIDERS

There are 3 sliders on the bottom that could be altered. The simulation would react accordingly. The 3 sliders include changeable data on:
- Houses for Sale.
- Houses that have Sold.
- Houses in the Market.


  Goodwin cycle  IM-2010  with debt and taxes added, modified from Steve Keen. THis can be extended by adding the Ponzi effect of borrowing for speculative investment.

 Goodwin cycle IM-2010 with debt and taxes added, modified from Steve Keen. THis can be extended by adding the Ponzi effect of borrowing for speculative investment.

WIP Summary of Davies 2017  article  from special Theory Culture and Society issue on Elites and Power after Financialization
WIP Summary of Davies 2017 article from special Theory Culture and Society issue on Elites and Power after Financialization
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
 The economy is a self-organizing
system that needs continuous growth and a constant inflow of energy and
materials in order to maintain itself. 
Absence of growth will make the system fragile, and economic contraction
could lead very quickly to its collapse. These are characteristics of dissipative

The economy is a self-organizing system that needs continuous growth and a constant inflow of energy and materials in order to maintain itself.  Absence of growth will make the system fragile, and economic contraction could lead very quickly to its collapse. These are characteristics of dissipative systems that apply to the free market economy. Another characteristic is that economic activity will unavoidably lead to the generation of waste heat, greenhouse gases and waste materials that the system must expel into its environment, making the system unviable in the present context of global warming and increasing oil prices.

The simplified graphic representation of the economy shows how it is basically profits that generate the funds for the resources needed to guarantee that the system can continue to grow. Loans do not fulfil this function, since loans must be repaid from profit and credit institutions will be reluctant to extend loans if they fear their profits are endangered by the inability of creditors to generate enough income to meet interest payments. So the system depends on private companies and blind market forces. However, society can no longer rely on a system that is blindly guided by the profit motive and that is to a large degree responsible for much of the environmental problems that now afflict us. The system cannot continue in its present self-reinforcing growth mode. Governments can and must step in to fulfil their responsibility and fundamentally reform a system that has become harmful and that is driven exclusively by profit.