Insight diagram
Explanation of the Model
This is a Model of COVID-19 outbreak in Burnie, Tasmania which shows the government actions in response to the pandemic COVID-19 and its affects on the Economy. The government health policy changes depending on the reported cases, which is a dependent upon the testing rate. 

Assumptions
Lockdown and travel ban were the main factor in government policy. It negatively impacts on the Economic growth as individuals are not going out which is directly affects the business around the world, in this insight 'Burnie'. This reduces the economic growth and the factors positively effecting economic growth such as Tourism.

Government policies has a negative impact on Exposer of individuals. Moreover, it also has a negative impact on chances of infection when exposed as well as other general infection rate.
 

Interesting Insight 
There is a significant impact of test rating on COVID-19 outbreak. Higher rates increases the government involvement, which decreases cases as well as the total death. 
In contrast, lower testing rates increase the death rate and cases. 

Tourism which plays a avital role in Tasmanian Economy greatly affects the Economic Growth. The decline of Tourism in parts of Tasmania such as Burnie, would directly decrease the economy of Tasmania.


  
BMA 708, Assessment Tast 3: Complex System, Burnie COVID-19 outbreak, Diprina Shakya-519673
Insight diagram
Socio-Economic Factors
Insight diagram
Economic Cost-Benefit Analysis- Roadkill Mitigation
Insight diagram
Socio-economic
Insight diagram
Serengeti 2
Insight diagram
Biodiversity-Habitat Loss
Insight diagram
Circular equations WIP for Runy.

Added several versions of the model. Added a flow to make C increase. Added a factor to be able to change the value 0.5. Older version cloned at IM-46280
Clone of Circularity in Economic models
Insight diagram
An initial study of the economics of single use coffee pods.
Real Coffee Pods ISD Humanities v 1.02
Insight diagram
This model simulates the economics of buying a home. It was created to compare buying a home against using investment returns to pay for rent.

Try cloning this insight, setting the parameter values for real-world scenarios, and then running sensitivity analysis (see tools) to determine the likely wealth outcomes. Compare buying a home to renting. Note that each run will keep the parameters the same while simulating market volatility.

version 1.8
Home buying simulation 1.8
Insight diagram
The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5.
The equation for DeltaN is a version of 
Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj
the maximum population is set to be one million, and the growth rate constant mu = 3.
 
Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.
POPULATION LOGISTIC MAP (WITH FEEDBACK)
Insight diagram

Modern industrial civilisation has created massive interdependencies which define it and without which it could not function. We all depend on industrial farming to produce the food we eat, we depend on gasoline being available at the gas station,  on the availability of electricity and even on the bread supplied by the local baker. Naturally, we tend to support the institutions that supply the amenities and goods to which we have become accustomed: if we get our food from the local supermarket, it is likely that we would be opposed to it’s closure. This means that the economic system that relies on continuous growth enjoys implicit societal support and that nothing short of environmental disaster or a shortage of essential raw materials will impede it’s growing indefinitely. It is not hard to work out the consequences of this situation!

Clone of The Inescapable Dynamic of Economic Growth (Version 2)
Insight diagram
From a March 2016 blog entry by Ari Andricopoulos
The economy simply explained
Insight diagram
<!--[if gte mso 9]> <![endif]-->

Theory of Structural Change for IAMO Research Group


The part-whole paradigm

Examples of research issues addressed here include the path dependence of farm structures, regime shifts in land-system change, as well as transitional processes in the evolution of farm structures and innovation systems. All these issues feature counter-intuitive systemic properties that could not have been predicted using standard agricultural economics tools. The key strength of the research group in regard to the part-whole paradigm is the internationally renowned expertise in the agent-based modelling of agricultural policy. (More on what happened here until now / is happening now)

The system-environment paradigm

This paradigm is represented by conceptual research drawing inspiration from Niklas Luhmann’s theory of “complexity-reducing” and “operationally closed” social systems. The attributes of complexity reduction and operational closure are shown to generate sustainability problems, conflicts, social dilemmas, ethical issues, and divergent mental models. The organizing idea explaining these phenomena is the complexity-sustainability trade-off, i.e., the tendency of the operationally closed systems to develop excessive internal complexity that overstrains the carrying capacity of the environment. Until now, the conceptual work along these lines has focused on developing the systems-theoretic principles of ecological degradation and highlighted the sustainability-enhancing role of nonprofit organizations and corporate social responsibility. Another overarching topic has been the analysis of connections between Luhmann’s social systems theory and the evolutionary economics approaches, such as those of Thorstein Veblen and Kenneth Boulding. <!--[if gte mso 9]> Normal 0 false false false DE X-NONE X-NONE <![endif]--><!--[if gte mso 9]> <![endif]--><!--[if gte mso 10]> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-ansi-language:DE;} <![endif]-->
Structure Change Model - IAMO
Insight diagram
Economic growth model, delay function
Insight diagram

This model is based on the article Dynamic modeling of Infectious Diseases, An application to Economic Evaluation of Influenza Vaccination Farmacoeconomics 2008, 26(1): 45-56 .

And EBOLA


Dynamic Modeling of Infectious Diseases
Insight diagram
Economic BPA/BPS Model
Insight diagram
From Schluter et al 2017 article A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017 video. See also Balke and Gilbert 2014 JASSS article How do agents make decisions? (recommended by Kurt Kreuger U of S)
Modelling human behaviour (MoHuB)
Insight diagram
Group Assignment
Insight diagram
Economic Model
Insight diagram
My Insight
12 2 months ago
Insight diagram
Socio-economic factors (kaya)
Insight diagram
Gilded Trap Stock and Flow Model - Lobster Fisheries
5 months ago