The model displayed depicts the interaction that the youth of Bourke has with the justice system and focuses on how factors like policing and community development affect the crime rate within this area. Bourke is a rural town that has a significant crime rate among youth. Local community members call for action to be taken in regards to this, meaning that steps must be taken to reduce the crime rate. This simple model explores how the amount of police and the investment of community development can have an effect on the town in regards to its issue of crime among youth.
Assumptions
- Bourke's youth population is 1200, with 700 in town, 200 committing crimes and 300 already in jail
- The amount of police, the expenditure on community development, and the domestic violence rate are the factors which have the potential to influence youth to commit crimes. The domestic violence rate is also influenced by the expenditure on community development.
- Sporting clubs, interpersonal relationships between youth and police, and teaching trade skills all make up community expenditure
- Activities relating to expenditure on community development run throughout the year, indicating that there is no delay where youth are not involved in these activities.
- Every 6 months, only 60% of jailed youth are released. This may be for various factors such as committing crime in jail or being issued with lengthier sentences due to the severity of the crime(s) committed
- 10% of youth who agree that domestic violence is an issue at home will commit crime
- There is a delay of 1 month before youth go to jail for crime(s) committed. This model assumes that youth who have committed crime either return home (by decision or by not being caught) or go to jail. It also assumes that other punishments such as community service refer to returning back home.
- The simulation takes place over a duration of 5 years (60 months)
- Adults have little effect on the youth. Only where domestic violence is concerned do they play a factor within this model
How the Model Works
The model begins with the assumptions previously stated. Youth have the potential to commit a crime. 3 main variables influence this decision, including the amount of police, expenditure on community development, and domestic violence rate (which is influenced by the previous variable). These 3 variables are able to be adjusted using the relevant sliders with 0.5 indicating a low investment and 0.9 indicating a high investment. Police also have an influence on this decision. This variable is also able to be adjusted by a slider. Last of all, the domestic violence rate also contributes to this decision and this variable is negatively influenced by community development.
Once a youth has committed a crime they are either convicted and sent to jail or return back to town. The conviction rate is also influenced by the amount of police in town, as youth are more likely to get caught and thus jailed. Once again, the Police variable is able to be adjusted via the slider. This process takes a month.
From here, youth typically spend 6 months in jail. After this time period 60% are released while the remaining 40% remain in jail either due to lengthier sentences for more severe crimes or due to incidents within jail. The process then repeats.
Parameter Settings and Results
- Initially there is a state of fluctuation within this model. It may be a good idea to ignore it and pay attention to how variables change over time from their initial state
- Increasing the amount of police will raise the amount of people jailed and decrease crime
- Increasing the community development variables from a minimal investment (i.e. set at 0.5) to a high investment (i.e. set at 0.9) will reduce both the crime rate and the conviction rate. It is worth noting that the community development variable also influences the domestic violence rate variable which also has an effect on the results
- If only 2 of the 3 community development variables have a high investment then there is not much effect on the crime rate or jail rate. All 3 variables should be given the same level of investment to give us a desired outcome
- The model does allow for a maximum of 40 police (as we do not want to spend more money on police than we already have in the past), as well as the maximum investment for community development. When choosing settings it may be necessary to ponder if it is financially realistic to maintain both a large number of police as well as investing heavily into community development