This version of the   CAPABILITY DEMONSTRATION   model has been further calibrated (additional calibration phases will occur as better standardized data becomes available).  Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Re
This version of the CAPABILITY DEMONSTRATION model has been further calibrated (additional calibration phases will occur as better standardized data becomes available).  Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Relative magnitudes and durations of impact remain in need of further data & adjustment (calibration). In the interests of maintaining steady progress and respecting budget & time constraints, significant simplifying assumptions have been made: assumptions that mitigate both completeness & accuracy of the outputs.  This model meets the criteria for a Capability demonstration model, but should not be taken as complete or realistic in terms of specific magnitudes of effect or sufficient build out of causal dynamics.  Rather, the model demonstrates the interplay of a minimum set of causal forces on a net student progress construct -- as informed and extrapolated from the non-causal research literature.
Provided further interest and funding, this  basic capability model may further de-abstracted and built out to: higher provenance levels -- coupled with increased factorization, rigorous causal inclusion and improved parameterization.
There has been an ongoing effort to find a means of making systems thinking accessible and readily adopted by others not familiar with systems thinking. One line of thinking places a good deal of the blame on systems thinkers themselves, the problem is that they have not found a good enough method o
There has been an ongoing effort to find a means of making systems thinking accessible and readily adopted by others not familiar with systems thinking. One line of thinking places a good deal of the blame on systems thinkers themselves, the problem is that they have not found a good enough method of explaining it and its benefits yet. 

Another possibility though is the extent to which those who are to be helped feel besieged by the situation in which they find themselves making them extremely wary about trying something new. 

This model is not realistic, at least it is hoped that there isn't anyplace where things are this bad. Different communities will be better or worse off in different categories and some will be succeeding in all areas. Those are the communities we need to learn from.

More explanation can be found under the information icons associated with each of the elements.
This simulation makes the negative effects of starting work too soon visible. You can play around with the parameters.    Find the full story behind this simulation  here .      If you have questions or feedback get in touch via  @swilluda
This simulation makes the negative effects of starting work too soon visible. You can play around with the parameters.

Find the full story behind this simulation here

If you have questions or feedback get in touch via @swilluda
 This model analyzes the growth and dynamics of Oshawa’s population using a logistic approach. Starting with an initial population of 170,000 and an increased carrying capacity of 180,000, it evaluates how the addition of new neighbourhoods, planned to accommodate an extra 10,000 residents over the
This model analyzes the growth and dynamics of Oshawa’s population using a logistic approach. Starting with an initial population of 170,000 and an increased carrying capacity of 180,000, it evaluates how the addition of new neighbourhoods, planned to accommodate an extra 10,000 residents over the next 10-15 years (or whatever time period) affects population changes. Key factors include the Oshawa Residents Death/Emigration Rate of 0.8% (realistic percent approximation), accounting for natural deaths and emigration, and the Oshawa Residents Birth/Immigration Rate of 2.4% (also a realistic percent approximation), reflecting new residents through births and immigration. The model tracks the net population change, providing insights into how Oshawa's population might grow or stabilize as it approaches its new carrying capacity!
Assignment 3 MGMT220 **Scroll down for adjustable sliders**    What is this model?   This model is designed as a simplified field of inputs and outputs for the  proposed  future justice reinvestment in the north-western NSW town of Bourke. This town is quite small with a total population of around 3
Assignment 3 MGMT220
**Scroll down for adjustable sliders**

What is this model?
This model is designed as a simplified field of inputs and outputs for the proposed future justice reinvestment in the north-western NSW town of Bourke. This town is quite small with a total population of around 3,000 people but a worryingly high rate of criminal  activity, antisocial behaviour and a generally low sense of community engagement. To plan for a better future this model has been created to map future patterns and changes given certain levels of community investment and policing which can me modified by users, including you!

Key Assumptions & Things to Note:
-Model interactions and consequences only focused on the effects of youth not adults.
-Total youth population assumed to be 1,500 out of the total 3,000 people in Bourke
-Model moves in monthly increments
-Model duration is 5 years (60 Months) as this seems like a realistic time frame for such a project plan to span over
-Engagement return modification allows between 0 and 6 months return to allow insight into the positive effects a shorter engagement time can have on the community
-Police Investment allows adjustment of police force units between 15 and 50
-Community Investment allows an investment of between 0 and 100 to provide a full spectrum of the town with or without investment

Model Prerequisite Understandings:
The model commences with 400 people engaging in criminal activity, and a further 300 people already in juvenile detention to provide a more realistic start point.

Model Analysis:
The most important message this model shows is that there is no one sided solution for everything. Without community investment, regardless of how many police you have the town is still going to be full of bored people committing crimes - just more will be caught and convicted.

On the flip side a town with no police and only community investment may have a low rate of people in juvenile detention and a high number of people in sports teams - but criminal activity may still be higher than optimal due to a low chance of getting caught.

You can see these results for yourselves simply by adjusting the variable sliders on the bottom right of the page to suit your investment interests. Relevant boundaries have been set to give only useful and meaningful information. Furthermore an engagement return tool has been added to show the effects of a slow or fast engagement pickup time ranging from 0 to 6 months. You will note that things change a lot quicker with a shorter engagement return time.

An interesting thing to note is how evenly 3 of the 4 key data fields in the first simulation display (with the outlier being sports team enrolment) when police investment is set to maximum and community investment is set to the minimum - we see essentially an even split between the 3 possibilities: In town, In Juvenile Detention or engaging in Criminal Activity. a 2:1 split of "bad" to "good" things happening. This shows with certainty that just adding policing with no positive reward or outlet for good behaviour results in a flattened cycle of boredom, criminal activity and conviction.

In this model it also seems that Bourke does require a fairly even but high matching of Police and Community Investment. For example setting the policing at 20 and the community engagement higher at say 50 results in indeed a high intake and output of town to sports team memberships however crime rates do still maintain a steady high dictating a more even match between policing and community investment like 40 and 60 to the former and latter to "eradicate" crime. (Of course this will never be 0 in the real world but it is a positive indicator here)

Multilevel context mechanisms and outcomes for hospital infection control
Multilevel context mechanisms and outcomes for hospital infection control
Summary of  Ch 22 of Mitchell Wray and Watts Textbook see  IM-164967  for book overview
Summary of  Ch 22 of Mitchell Wray and Watts Textbook see IM-164967 for book overview
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

 To provide a brief overview of the description of this model, here is a table of contents of sorts:  - The Program - Overview  - The Model Itself - Macro Scale  - Principal Inputs  - Principal Outputs  - Inputs & Outputs - Brief Explanation  - The Details - How This All Works  - Viewing Data Ou
To provide a brief overview of the description of this model, here is a table of contents of sorts:
- The Program - Overview
- The Model Itself - Macro Scale
- Principal Inputs
- Principal Outputs
- Inputs & Outputs - Brief Explanation
- The Details - How This All Works
- Viewing Data Outputs


The Program - Overview:

The model as seen revolves around the main variable components featuring "program" in their name and identified by their green color. The individual household starts at the "Building Envelope" program, which involves changes and modifications made to the actual building envelope of the house to make it more energy efficient, such as modifications to the insulation, windows, doors, etc. Then, the individual household will begin to progress through the behavioral component of the energy reduction program, starting with Climate Control. This portion concerns thermostat set points, the use of windows and fans to modulate temperature, and a behavioral adjustment in how to tolerate different levels of hot/cold temperature in the household. From here, the household moves through each room in the house, implementing energy reduction practices as appropriate. Because this program is designed to be modular and applicable to wide varieties of homes across the country, these rooms have been broken up into some standard categories that should apply to most households. These categories include the kitchen, the washroom, the main room/living room/"den", any bathrooms, and any bedrooms. Each category has its own set of energy reduction practices that can all be applied from a behavioral standpoint; clicking on each individual "program" will show a brief description of what these practices are in the notes section. Once the individual household has progressed through all of these areas, making the appropriate adjustments in each, they have more or less effectively "completed" the program. In reality, areas may continue to pop up where adjustments can be made to reduce energy consumption, so even though the program has been "completed" the members of the household will be continually working to maintain the new efficiency standard they have achieved with the end goal of cultivating a permanent, sustainable lifestyle. 


The Model Itself - Macro Scale:

The above is all essentially a description of how the household energy reduction program operates; the model is obviously tied to this, however it also includes an energy component that takes into account energy savings not only from a single house but all houses in a single community. How this all works will be discussed more in detail below, but first some basics will be gone over.

Principal inputs:

- energy capable of being saved in each portion of the program through behavioral changes (e.g. total possible energy reductions compared with initial baseline use prior to starting the program are X kWh/year and Y CCF/year)
- % of progress that needs to be made on meeting the reduction goal prior to moving onto the next program (e.g. for a total possible energy reduction of X compared to the initial energy use prior to starting the program, the participant must have reduced 90% of that total energy prior to moving on to the next program)
- time each program is projected to take (e.g. 4 weeks, 5 weeks, etc.)
- households in the community
- time (i.e. how long to run the model for, e.g. 52 weeks, 104 weeks, etc.)

Principal Outputs:

- amount of kWh of electricity saved by a household over the given period of time since starting the program (based on a kWh/yr basis)
- amount of CCF of gas saved by a household over the given period of time since starting the program (based on a CCF/yr basis)
- amount of gas and amount of electricity saved by the community the given period of time since starting the program (based on a per year basis)
- a plot of the progress made on each program for a specific period of time (e.g. which program is the household in, and what is their progress on the rest of the program they have already completed)

Inputs & Outputs - Brief Explanation:

For this model, the only inputs that could vary significantly from community to community are the specific number of households as well as the time the program has been in operation. Obviously the power that each household is capable of reducing can vary from household to household, however we are mainly concerned with the average energy reduction when looking at the community scale as there will always be outliers, which is why average numbers are used. Of the outputs produced, the kWh and CCF savings can be translated to lbs of CO2 saved, as well as other useful energy savings metrics that can better explain the impact of CE4A to the normal person than trying to explain the details behind what 1 kilo-watt hour is. Additionally, for a specific area's utility rate, the number of kWh/CCF saved overtime can yield data about how much money the specific household has saved since starting the program. This last statistic would be more helpful if the program were operating by strictly giving all the savings from energy reduction back to the homeowner; as this isn't exactly how CE4A handles this component, the model would have to be modified to more accurately depict the total savings going back to the homeowner/company revenue based on energy savings over time.


The Details - How This All Works:

Program Progression per Program:
The progress of the individual household through the home energy reduction program is essentially dictated by the progress through each individual program within. Progress through these individual programs is dictated by an inverse tangent curve that models behavioral change. The curve essentially outputs the % of progress the individual household has made, going from a value of 0 to 100. 
- Why an inverse tangent curve? - the shape of the curve includes an initial portion in which changes made are significantly large, followed by a portion in which the rate of change decreases as the easily made changes are completed over time. Compared with curves of similar shape, the important part about the inverse tangent curve is that it has a horizontal asymptote that the curve will only get close to, but never actually reach over time. This is representative of the concept that individuals will always have to work to maintain energy reduction practices until they become habit, as well as the reality that new challenges in the field of energy reduction can and will arise over time as people and technology changes.
***
Important to note: the inverse tangent function has been written to operate on a basis of weeks and % (in terms of a whole number XX.YY, not 0.XXYY). If the time scale is to be adjusted, say from weeks to months, then the entire tangent function must be rewritten to reflect this. Additionally, the function outputs values going from 0 to 100. This is a key reason why the function would need to be rewritten, as this would be drastically changed if different time units were used.
***
Inputs for each program include the progress % that the household needs to reach to advance on to the next program, as well as the time (in weeks) it should take them to reach this % threshold. Given the above explanation for how the inverse tangent curve works, the % progress and time threshold values should be chosen based on how much change is realistically possible within that time range (e.g. if it is realistic for an individual to complete 95% of possible changes within a 3 week period and form the habits to maintain those changes, then those values are well-suited for that program. However, if some programs have components that will take a long time to adapt to, then a longer period of time should be picked or a lower progress threshold, ideally the former.

Program Progression from Program to Program:
Each program following the first includes if-then statements related to the progress threshold of the previous program; once that program reaches that threshold, then the code the programs were written on will start the next program and reset its specific time scale to start at time=0 instead of time=current time in order to allow for flexibility in changing time thresholds without rewriting the entire inverse tangent function every time. In this way, changing progress thresholds not only affects the rate of progress of the current program but the start time of all others after it as well. 

Energy Reduction & Values:
The energy reduction numbers used in this model are all based on roughly what types of energy would be used in each room and how much is possible to be reduced. These numbers will all total up to the total projected energy reduction per household in terms of CCF/kWh, but the individual breakdown per room type as found in this model is entirely arbitrary and was chosen according to what made the most sense based on knowledge of what energy is used in which room and roughly how much with regards to the savings measures for the room type. These values are also on a per-week basis, so the small size is understandable in that context (originally on a yearly basis, then divided by 52 to get weeks to make this work with the model)

Original Use & Baseline Use:
Although this model does not utilize this and instead operates on a total savings possible basis, the initial energy usage of a particular household can be put into the "___.CCFOriginalUse" and "___.CCFBaseline" variables (note that CCF is interchangeable with KWH here) to get the total amount of possible savings based on real data. Currently, baseline use is set to 0 for each program with original use equivalent to the total amount of energy capable of being reduced per week for that room type. These numbers were derived from an estimate on the total energy reduction possible in terms of kWh and CCF, which was then broken down into each room and the type of energy capable of being reduced in each (see above section for more on this).

Note that "TotalKWH/CCFSavings" is for each individual household, whereas "NeighborhoodKWH/CCFSavings" is for the entire neighborhood composed of the amount of houses stored in the variable "#Households."


Viewing Data Outputs:

- Viewing current program progress at time X:
- use the plot option to while selecting "BuildingEnvelope.Program", "ClimateControl.Program", "Kitchen.Program," etc., to see the progress curves for each program over time.
- Viewing savings data:
- use the data table option to view the kWh/CCF savings over time for the household, the community, or both, changing the time column to display most recent time first; this will give the total savings in each of those areas for that entire time period.
Simple box model for atmospheric and ocean carbon cycle, with surface and deep water, including DIC system, carbonate alkalinity, weathering, O2, and PO4 feedbacks.
Simple box model for atmospheric and ocean carbon cycle, with surface and deep water, including DIC system, carbonate alkalinity, weathering, O2, and PO4 feedbacks.
​ The Model      The model displayed depicts the interaction that the youth of Bourke has with the justice system and focuses on how factors like policing and community development affect the crime rate within this area. Bourke is a rural town that has a significant crime rate among youth. Local com
The Model

The model displayed depicts the interaction that the youth of Bourke has with the justice system and focuses on how factors like policing and community development affect the crime rate within this area. Bourke is a rural town that has a significant crime rate among youth. Local community members call for action to be taken in regards to this, meaning that steps must be taken to reduce the crime rate. This simple model explores how the amount of police and the investment of community development can have an effect on the town in regards to its issue of crime among youth.


Assumptions
  • Bourke's youth population is 1200, with 700 in town, 200 committing crimes and 300 already in jail
  • The amount of police, the expenditure on community development, and the domestic violence rate are the factors which have the potential to influence youth to commit crimes. The domestic violence rate is also influenced by the expenditure on community development.
  • Sporting clubs, interpersonal relationships between youth and police, and teaching trade skills all make up community expenditure
  • Activities relating to expenditure on community development run throughout the year, indicating that there is no delay where youth are not involved in these activities.
  • Every 6 months, only 60% of jailed youth are released. This may be for various factors such as committing crime in jail or being issued with lengthier sentences due to the severity of the crime(s) committed
  • 10% of youth who agree that domestic violence is an issue at home will commit crime
  • There is a delay of 1 month before youth go to jail for crime(s) committed. This model assumes that youth who have committed crime either return home (by decision or by not being caught) or go to jail. It also assumes that other punishments such as community service refer to returning back home.
  • The simulation takes place over a duration of 5 years (60 months)
  • Adults have little effect on the youth. Only where domestic violence is concerned do they play a factor within this model

How the Model Works

The model begins with the assumptions previously stated. Youth have the potential to commit a crime. 3 main variables influence this decision, including the amount of police, expenditure on community development, and domestic violence rate (which is influenced by the previous variable). These 3 variables are able to be adjusted using the relevant sliders with 0.5 indicating a low investment and 0.9 indicating a high investment. Police also have an influence on this decision. This variable is also able to be adjusted by a slider. Last of all, the domestic violence rate also contributes to this decision and this variable is negatively influenced by community development.

Once a youth has committed a crime they are either convicted and sent to jail or return back to town. The conviction rate is also influenced by the amount of police in town, as youth are more likely to get caught and thus jailed. Once again, the Police variable is able to be adjusted via the slider. This process takes a month.

From here, youth typically spend 6 months in jail. After this time period 60% are released while the remaining 40% remain in jail either due to lengthier sentences for more severe crimes or due to incidents within jail. The process then repeats.


Parameter Settings and Results
  • Initially there is a state of fluctuation within this model. It may be a good idea to ignore it and pay attention to how variables change over time from their initial state
  • Increasing the amount of police will raise the amount of people jailed and decrease crime
  • Increasing the community development variables from a minimal investment (i.e. set at 0.5) to a high investment (i.e. set at 0.9) will reduce both the crime rate and the conviction rate. It is worth noting that the community development variable also influences the domestic violence rate variable which also has an effect on the results
  • If only 2 of the 3 community development variables have a high investment then there is not much effect on the crime rate or jail rate. All 3 variables should be given the same level of investment to give us a desired outcome
  • The model does allow for a maximum of 40 police (as we do not want to spend more money on police than we already have in the past), as well as the maximum investment for community development. When choosing settings it may be necessary to ponder if it is financially realistic to maintain both a large number of police as well as investing heavily into community development