A Susceptible - Infected - Recovered disease as a stock and flow model for COVID.
A Susceptible - Infected - Recovered disease as a stock and flow model for COVID.
Clusters of interacting methods for improving health services network design and delivery. Includes Forrester quotes on statistical vs SD methods and the Modeller's dilemma. Simplified version of  IM-14982  combined with  IM-17598  and  IM-9773
Clusters of interacting methods for improving health services network design and delivery. Includes Forrester quotes on statistical vs SD methods and the Modeller's dilemma. Simplified version of IM-14982 combined with IM-17598 and IM-9773
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 Modélisation spatiale et multi-agents d'une épidémie. Avec trois classes d'individus: susceptibles (sains), infectés (malades et contagieux), et remis (sains et temporairement immunisés).  Traduit et adapté de    https://insightmaker.com/insight/2846/Agent-Based-Disease-Simulation   

Modélisation spatiale et multi-agents d'une épidémie. Avec trois classes d'individus: susceptibles (sains), infectés (malades et contagieux), et remis (sains et temporairement immunisés).

Traduit et adapté de 

https://insightmaker.com/insight/2846/Agent-Based-Disease-Simulation  


11 months ago
 This model is a classic instance of an Erlang Queuing Process.     We have the entities:  - A population of cars which start off in a "crusing" state;  - At each cycle, according to a Poisson distribution defined by "Arrival Rate" (which can be a constant, a function of time, or a Converter to simu
This model is a classic instance of an Erlang Queuing Process.

We have the entities:
- A population of cars which start off in a "crusing" state;
- At each cycle, according to a Poisson distribution defined by "Arrival Rate" (which can be a constant, a function of time, or a Converter to simulate peak hours), some cars transition to a "looking" for an empty space state.
- If a empty space is available (Parking Capacity  > Count(FindState([cars population],[parked]))) then the State transitions to "Parked."
-The Cars stay "parked" according to a Normal distribution with Mean = Duration and SD = Duration / 4
- If the Car is in the state "Looking" for a period longer than "Willingness to Wait" then the state timeouts and transitions to impatient and immediately transitions to "Crusing" again.

The model is set to run for 24 hours and all times are given in hours (or fraction thereof)

WIP:
- Calculate the average waiting time;
- Calculate the servicing level, i.e., 1- (# of cars impatient)/(#cars looking)

A big THANK YOU to Scott Fortmann-Roe for helping setup the model's framework.
 This model is a classic instance of an Erlang Queuing Process.     We have the entities:  - A population of cars which start off in a "crusing" state;  - At each cycle, according to a Poisson distribution defined by "Arrival Rate" (which can be a constant, a function of time, or a Converter to simu
This model is a classic instance of an Erlang Queuing Process.

We have the entities:
- A population of cars which start off in a "crusing" state;
- At each cycle, according to a Poisson distribution defined by "Arrival Rate" (which can be a constant, a function of time, or a Converter to simulate peak hours), some cars transition to a "looking" for an empty space state.
- If a empty space is available (Parking Capacity  > Count(FindState([cars population],[parked]))) then the State transitions to "Parked."
-The Cars stay "parked" according to a Normal distribution with Mean = Duration and SD = Duration / 4
- If the Car is in the state "Looking" for a period longer than "Willingness to Wait" then the state timeouts and transitions to impatient and immediately transitions to "Crusing" again.

The model is set to run for 24 hours and all times are given in hours (or fraction thereof)

WIP:
- Calculate the average waiting time;
- Calculate the servicing level, i.e., 1- (# of cars impatient)/(#cars looking)

A big THANK YOU to Scott Fortmann-Roe for helping setup the model's framework.
The VANET handles situation of parking in crowded areas. It takes into account the parking capacity, arrival rate of cars, already parked cars , while making decisions.  The description of states are :   1. Cruising : State of cars which are moving out of parking area, but are still inside the parki
The VANET handles situation of parking in crowded areas. It takes into account the parking capacity, arrival rate of cars, already parked cars , while making decisions.
 The description of states are :


1. Cruising : State of cars which are moving out of parking area, but are still inside the parking lot.

2.Parked : State of cars which are already parked.

3. Just entered : State of cars which have just entered the parking lot and are searching for parking position.


 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
This is my first attempt at creating a simple Agent Based Simulation Model. Nothing fancy, just something that works.    This insight is an element of the  Agent Based Modeling  learning module in  Systems KeLE .
This is my first attempt at creating a simple Agent Based Simulation Model. Nothing fancy, just something that works.

This insight is an element of the Agent Based Modeling learning module in Systems KeLE.
 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
From Schluter et al 2017  article  A framework for mapping and comparing behavioural theories in models of social-ecological systems   See also Balke and Gilbert 2014 JASSS  article  How do agents make decisions? (recommended by Kurt Kreuger U of S)
From Schluter et al 2017 article A framework for mapping and comparing behavioural theories in models of social-ecological systems See also Balke and Gilbert 2014 JASSS article How do agents make decisions? (recommended by Kurt Kreuger U of S)
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
The VANET handles situation of parking in crowded areas. It takes into account the parking capacity, arrival rate of cars, already parked cars , while making decisions.  The description of states are :   1. Cruising : State of cars which are moving out of parking area, but are still inside the parki
The VANET handles situation of parking in crowded areas. It takes into account the parking capacity, arrival rate of cars, already parked cars , while making decisions.
 The description of states are :


1. Cruising : State of cars which are moving out of parking area, but are still inside the parking lot.

2.Parked : State of cars which are already parked.

3. Just entered : State of cars which have just entered the parking lot and are searching for parking position.


A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.
A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.
The story board runs through the premise of the project with the approach I took
The story board runs through the premise of the project with the approach I took
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).