Insight diagram
The story board runs through the premise of the project with the approach I took
42845270: Nathaniel Vala_ Assignment 3
Insight diagram
Three Agent Model of IM-13669. Unconscious affective dynamics Josh Epstein's Agent Zero Book webpage 
See spatial patches version IM-15119
 
Clone of Fear Conditioning 3 Agents
Insight diagram

Modelo Baseado em Agente para a dispersão espacial de doenças, considerando o modelo SIR com perda da imunidade ao vírus, conforme [Bellinger G.]

Clone of Modelo de dispersão espacial de uma doença baseado em SIR-ABM
Insight diagram
Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version IM-574
Clone of Clone of Smoking Cessation
Insight diagram

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
This insight is an element of the Agent Based Modeling learning module in Systems KeLE.
Clone of The Game of Life
Insight diagram

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
Clone of The Game of Life
Insight diagram

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.
Clone of The Game of Life
Insight diagram
WIP Combining SD and ABM Representations
Clone of Combined SD and ABM SIR Disease Dynamics
Insight diagram

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
Clone of The Game of Life
Insight diagram
From Schluter et al 2017 article A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017 video. See also Balke and Gilbert 2014 JASSS article How do agents make decisions? (recommended by Kurt Kreuger U of S)
Clone of Modelling human behaviour (MoHuB)
Insight diagram
Will the ducks make it to the pond?  or will the hawks swoop on them?
Duck v Hawk v3
Insight diagram
First attempt at transition between multiple states
OA knee multiple state ABM
Insight diagram

From IM-3533 Grimm's ODD and Nate Osgood's ABM Modeling Process and Courses based on Volker Grimm and Steven F. Railsback's 2012 paper and Muller et al 2013 paper Describing Human Decisions in Agent-based Models – ODD + D, An Extension of the ODD Protocol', Environmental Modelling and Software, 48: 37-48.

Pattern Oriented Modelling
3 5 months ago
Insight diagram
This Agent-based Model was an idea of Christopher DICarlo "Disease Transmission with Agent Based Model' aims to present the COVID cases in Puerto Princesa City as of June 3, 2021

Insight author: Jolina Rosile Magbanua

Clone of Clone of Clone of ABM Model of COVID-19 in Puerto Princesa City
Insight diagram

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
Clone of The Game of Life
Insight diagram
Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version IM-574
Clone of Clone of Clone of Smoking Cessation
Insight diagram
Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version IM-574
Clone of Clone of Smoking Cessation
Insight diagram
Three Agent Model of IM-14058 with Spatial awareness. Unconscious affective dynamics Josh Epstein's Agent Zero Book webpage  Part II p.89 with spatial ABM

Clone of Fear Conditioning 3 Agents with Spatial Patches
Insight diagram
WIP Combining SD and ABM Representations
Clone of Combined SD and ABM SIR Disease Dynamics
Insight diagram

Modelo Baseado em Agente para a dispersão espacial de doenças, considerando o modelo SIR com perda da imunidade ao vírus, conforme [Bellinger G.]

Modelo de dispersão espacial de uma doença baseado em SIR-ABM
Insight diagram
Modeling User Adoption
Insight diagram
This Agent-based Model was an idea of Christopher DICarlo "Disease Transmission with Agent Based Model' aims to present the COVID cases in Puerto Princesa City as of June 3, 2021

Insight author: Jolina Rosile Magbanua

Clone of Clone of Clone of ABM Model of COVID-19 in Puerto Princesa City
Insight diagram
This model is a classic instance of an Erlang Queuing Process.

We have the entities:
- A population of cars which start off in a "crusing" state;
- At each cycle, according to a Poisson distribution defined by "Arrival Rate" (which can be a constant, a function of time, or a Converter to simulate peak hours), some cars transition to a "looking" for an empty space state.
- If a empty space is available (Parking Capacity  > Count(FindState([cars population],[parked]))) then the State transitions to "Parked."
-The Cars stay "parked" according to a Normal distribution with Mean = Duration and SD = Duration / 4
- If the Car is in the state "Looking" for a period longer than "Willingness to Wait" then the state timeouts and transitions to impatient and immediately transitions to "Crusing" again.

The model is set to run for 24 hours and all times are given in hours (or fraction thereof)

WIP:
- Calculate the average waiting time;
- Calculate the servicing level, i.e., 1- (# of cars impatient)/(#cars looking)

A big THANK YOU to Scott Fortmann-Roe for helping setup the model's framework.
Clone of Clone of Parking Lot Problem (WIP)
Insight diagram
A new archetype, The Tyranny of Small Steps (TYST) has been observed. Explained through a system dynamics perspective, the archetypical behaviour TYST is an unwanted change to a system through a series of small activities that may be independent from one another. These activities are small enough not to be detected by the ‘surveillance’ within the system, but significant enough to encroach upon the “tolerance” zone of the system and compromise the integrity of the system. TYST is an unintentional process that is experienced within the system and made possible by the lack of transparency between an overarching level and a local level where the encroachment is taking place.

Reference:

Haraldsson, H. V., Sverdrup, H. U., Belyazid, S., Holmqvist, J. and Gramstad, R. C. J. (2008), The Tyranny of Small Steps: a reoccurring behaviour in management. Syst. Res., 25: 25–43. doi: 10.1002/sres.859 

Clone of The Tyranny of small steps archetype (agent based)