Insight diagram
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
Clone of SARS-CoV-19 model
Insight diagram
Sike Liu's model on COVID-19 & Burnie Economy

 

This model contains three parts, the first part stimulates the COVID-19 pandemic outbreak in Burnie; the second part describes possible government policies on pandemic control; and the third part examines the possible negative impact on economy growth from those policies.


Assumptions:

1. The state boarder has already been closed and all new arrivals in Burnie need to enter a fixed period of quarantine. And the quarantine rate measures the strength of the government policy on quarantine (such as length and method).

2. Patient zero refers to the initial number of undetected virus carriers in the community.

3. Government policies such as social distancing, compulsory mask and lock down could effectively reduce community’s exposure to the virus.

4. Social distancing and compulsory mask will be triggered when COVID-19 cases reach and beyond 10 and lock down will be triggered when cases reach and beyond 1000.

4. High vaccine rate, on the other hand, could effectively reduce the exposed people’s chance of getting infected.

5. Only when vaccine rate reaches 0.6 and beyond, then the spread of COVID-19 will be significantly slowed.

6. Vaccine can’t 100% prevent the infection of the virus.

7.The infected people will need to be tested so that they could be counted as COVID-19 cases and the test rate decides the percentage of infected people being tested.

8. After people recover, there are chances of them losing immunity and the immunity lost rate measures that.

9. The COVID-19 cases could also be detected at quarantine facilities, and the quarantine process will effectively reduce the Infection and exposure rate.

10. Social distancing and compulsory mask wearing are considered as light restrictions in this model and will have less impact on both supply and demand side, and lockdown is considered as heavy restriction which will have strong negative impact on economy growth in this model.

11. In this model, light restrictions will have more negative impacts on the demand side compared to the supply side.

12. In this model, both supply side and demand side will power the economy growth.

 

Interest hints:

The vaccine could significantly reduce the spread of COVID-19 and effectively reduce the number of COVID-19 cases.

The number of the COVID-19 cases will eventually be stabilized when the number of susceptible is running out in a community (reached community immunity).

Quarantine could slightly reduce the cases numbers, but the most effective way is to reduce the number of new arrivals.

BMA708_Assignment 3_Sike Liu_567871_COVID-19 outbreak and Burnie economy
Insight diagram
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

Clone of Infectious Disease Model (Version 4.0)
Insight diagram

If no attempt is made to eradicate SARS-CoV-2 it will eventually become endemic, ineradicable, at a high never-ending cost to world in terms of economic growth, human health and lives. The current strategy adopted by most governments is to impose  restrictive measures when the virus threatens to overwhelm hospital services and to relax these restrictions as this danger recedes. This is short-sighted. It cannot eliminate the highly infectious delta variant, which has an estimated R0-value of between 6 & 9. Periodic lockdowns will be hard to avoid in the future.

However, eradication is possible, herd immunity can be achieved quickly worldwide, reducing the R0 permanently to below 1, which will lead to the disappearance of the virus. Critical in achieving this is Ivermectin, a medicine that is cheap,  readily available and can be manufactured by most countries. A recent meta study has shown that Ivermectin, prophylactically employed, can prevent infection with the virus  by 86 % on average – very similar to the efficacy of vaccines. Eradication will require employment of all the instruments shown in the graph: future generations do not have to live with this plague. 

SarsCov 2: Countering its Dynamic
Insight diagram
The SEIRS(D) model for the purpose of experimenting with the phenomena of viral spread. I use it for COVID-19 simulation.
Clone of SEIR - COVID-19 (v.1)
Insight diagram
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

Clone of Infectious Disease Model (Version 3.0)
Insight diagram
Modelo epidemiológico simples
SIR: Susceptíveis - Infectados - Recuperados

Clique aqui para ver um vídeo com a apresentação sobre a construção e uso deste modelo.  É recomendável ver o vídeo num computador de mesa para se poder ver os detalhes do modelo.


Dados iniciais de infectados, recuperados e óbitos para diversos países (incluindo o Brasil) podem ser obtidos aqui neste site.
Clone of Modelo SIR simples - Covid 19
Insight diagram
==edited by Prasiantoro Tusono and Rio Swarawan Putra==

Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in
https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
  1. http://www.nku.edu/~longa/classes/2020spring/mat375/mathematica/SIRModel-MAA.nb
  2. https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model
Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) with death - based on Andrew E Long
Insight diagram
An SIR model for Covid-19

This is a simple example of an SIR model for my Mathematics for Liberal Arts classes at Northern Kentucky University, Spring of 2022.

Let's think about things on the scale of a week. What happens over a week?

With an Ro of 2 (2 people infected for each infected individual, over the course of a week); recovery rate of 1 (every infected person loses their infectiousness after a week), and resusceptible rate of .05 (meaning .05, or a twentieth of the recovered lose their immunity each week), the disease peaks -- does the wave, then waves again before the year is out, then ultimately becomes
"endemic" (that is, it's never going away, which is clear after two years -- that is, a time of 104 weeks). This is like our seasonal flu (only the disease in this simulation doesn't illustrate seasonality -- that requires a more complicated model).

With an Ro of .9, recovery rate of 1, and resusceptible rate of .05, the disease is eliminated.

Masking, social distancing (including quarantining following contact), and quarantines all serve to reduce infectivity. And if we can drive infectivity down far enough, the disease can be eliminated. Other things that help is slowing down the resusceptibility, by vaccinating. Vaccines (in general) impart an immune response that reduces -- or even eliminates -- your susceptibility. We are still learning the extent to which these vaccines impart long-term immunity.

Other tools at our disposal include Covid-19 treatments, which increase the recovery rate, and vaccinations, which reduce the resusceptible rate. These can also serve to help us eradicate a disease, so that it doesn't become endemic (and so plague us forever).

Andy Long
Mathematics and Statistics

Some resources:
  1. Wear a good mask: https://www.cdc.gov/coronavirus/2019-ncov/your-health/effective-masks.html
  2. Gotta catch those sneezes: https://www.dailymail.co.uk/sciencetech/article-8221773/Video-shows-26-foot-trajectory-coronavirus-infected-sneeze.html

MAT115 Covid Simulation
Insight diagram
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in
https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
  1. http://www.nku.edu/~longa/classes/2020spring/mat375/mathematica/SIRModel-MAA.nb
  2. https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model
Clone of Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) with death
Insight diagram
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

Clone of Infectious Disease Model (Version 3.0)
Insight diagram
A simple ABM example illustrating how the SEIR model works. It can be a basis for experimenting with learning the impact of human behavior on the spread of a virus, e.g. COVID-19.
Clone of SEIR ABM MODEL
Insight diagram

Overview:

Overall, this analysis showed a COVID-19 outbreak in Burnie, the government policies to curtail that, and some of the impacts it is having on the Burnie economy.


Variables

The simulation made use of the variables such as; Covid-19: (1): Infection rate. (2): Recovery rate. (3): Death rate. (4): Immunity loss rate etc. 


Assumptions:

From the model, it is apparent that government health policies directly affect the economic output of Burnie. A better health policy has proven to have a better economic condition for Burnie and verse versa.


In the COVID-19 model, some variables are set at fixed rates, including the immunity loss rate, recovery rate, death rate, infection rate, and case impact rate, as this is normally influenced by the individual health conditions and social activities.

Moving forward, we decided to set the recovery rate to 0.7, which is a rate above the immunity loss rate of 0.5, so, the number of susceptible could be diminished over time.


Step 1: Try to set all value variables at their lowest point and then stimulate. 

 

Outcome: the number of those Infected are– 135; Recovered – 218; Cases – 597; Death – 18,175; GDP – 10,879.


Step 2: Try to increase the variables of Health Policy, Quarantine, and Travel Restriction to 0.03, others keep the same as step 1, and simulate


Outcome: The number of those Infected – 166 (up); Recovered – 249 (up); Cases – 554 (down); Death – 18,077 (down); GDP – 824 (down).


With this analysis, it is obvious that the increase of health policy, quarantine, and travel restriction will assist in increase recovery rate, a decrease in confirmed cases, a reduction in death cases or fatality rate, but a decrease in Burnie GDP.


Step 3: Enlarge the Testing Rate to 0.4, variable, others, maintain the same as step 2, and simulate


Outcome: It can be seen that the number of Infected is down to – 152; those recovered down to – 243; overall cases up to – 1022; those that died down to–17,625; while the GDP remains – 824.


In this step, it is apparent that the increase of testing rate will assist to increase the confirmed cases.


Step 4: Try to change the GDP Growth Rate to 0.14, then Tourism Growth Rate to 0.02, others keep the same as step 3, and then simulate the model


Outcome: what happens is that the Infected number – 152 remains the same; Recovered rate– 243 the same; Number of Cases – 1022 (same); Death – 17,625 (same); but the GDP goes up to– 6,632. 


This final step made it obvious that the increase of GDP growth rate and tourism growth rate will help to improve the overall GDP performance of Burnie's economy.

Clone of The Recent COVID-19 Outbreak in Burnie Tasmania - Buchi Okafor 546792
Insight diagram
This is the first in a series of models that explore the dynamics of and policy impacts on infectious diseases. This basic  model divides the population into three categories -- Susceptible (S), Infectious (I) and Recovered (R).  

Press the simulate button to run the model and see what happens at different values of the Reproduction Number (R0).

The second model that includes a simple test and isolate policy can be found here.
Future Learn Basic SIR Model
Insight diagram
Modelo epidemiológico simples
SIR: Susceptíveis - Infectados - Recuperados

Clique aqui para ver um vídeo com a apresentação sobre a construção e uso deste modelo.  É recomendável ver o vídeo num computador de mesa para se poder ver os detalhes do modelo.


Dados iniciais de infectados, recuperados e óbitos para diversos países (incluindo o Brasil) podem ser obtidos aqui neste site.
Modelo SIR simples - Covid 19
Insight diagram

INTRODUCTION

COVID-19

Coronavirus which was named COVID-19 is a respiratory disease which affects the lungs of the infected person and thus making such people vulnerable to other diseases such as pneumonia. It was first discovered in Wuhan China in December 2019 and since then has spread across the world affecting more than 40 million people from which over one million have died.

In the early discovery of the COVID-19, there were measures that were put in place with the help World Health Organization (WHO). They recommended a social distance of 1.5 meters to 2 meters to curb the spread since the scientist warned that COVID-19 can be carried in the droplets when someone breathes or cough. Another measure which was advised by WHO was wearing of mask, especially when people are in group. Wearing of mask would ensure that someone’s droplets do not leave their mouth or nose when they breathe or cough. It also help one from breathing in the virus which believed to be contagious and airborne.

The World Health Organization also advised on washing of the hand and avoiding frequent touching of the face. People mostly use their hand to touch surfaces which mad their hand the greatest harbor of the disease. Therefore, washing hands with soap will kill and wash away the virus from the hands. Avoiding touching of face also will prevent people from contracting the disease since the virus is believed to enter the body through openings such as eye, nose and mouth.

Another measure as a precaution from contracting the disease was to avoid hand shaking, hugging, kissing and any other thing which would bring people together. These were measures put to ensure that COVID-19 do not move from one person to another because of its airborne nature and the fact that it can be carried from the mouth or nose droplets.

Healthcare workers, in most of the countries, were provided with Personal Protective Equipment (PPEs) which helped them to protect themselves from contracting the virus. Healthcare workers were at the forefront in combating the disease since they were the people receiving the sick, including the ones with the virus. This exposed them to COVID-19 more than anyone hence more care was needed for them. Their PPEs comprised of white overall covering the whole body from head to toes. It also includes face mask and googles worn to prevent anything getting in their eyes. Their hands also were covered with gloves which were removed occasionally to avoid concentration of the virus on one glove.

COVID-19 affected many economies across the world as it greatly affected the human economic activities across the world. Due to the nature and how it spread, COVID-19 lead many countries to lockdown the country as we know it. Travelling was stopped as many countries feared the surge of the virus due to many people travelling form the countries which are already greatly affected. Another reason which travelling was hampered was due to the fact that the virus could spread among the travelers in an airplane. There were no proper measures to ensure social distance in the airplane and many people feared travelling from fear of contracting the disease.

This greatly affected the economy of many countries including great economies like USA. Tourism industry was the one affected the most as many country mostly depend on foreign travelers as their tourist. Many countries do not have proper domestic tourism structure and therefore depend on visitors who travels from foreign countries. Such countries have their economies greatly affected since the earnings from tourism either gone down or was not there at all.

Apart from locking down the country from foreigners, many major cities across the world were under lockdown. This means that even the citizens of the country were neither allowed in or out of the city. This restricted movement of people affecting greatly the human economic activities as many businesses were closed down especially transport businesses. The movement of goods from one places to another was affected making business difficult to carry out. Many people who dealt in perishable agricultural products count losses as their farm produced were destroyed because of lack of wider market. Some countries banned some businesses such as importing second hand clothes since it was believed that they could harbor the virus. Most of the meeting places such as sporting events and pubs were closed down affecting greatly the people who were involved in such businesses.

Across the world, schools were closed. Schools contain students in large numbers which could affect many students across the world. Learning was temporary stopped as different countries were finding ways of curbing the virus.

Scientist are busy like bees across the world to find the vaccine for the diseases that have ravage many countries and above all, they are trying to find the cure. Many countries have carried out their trial of vaccines with the hope to find an effective vaccine for the virus.

Meanwhile it is necessary to find ways by which the virus can be controlled so that it doesn’t spread to a point where it come out of control. Some of the measures put by the WHO has been highlighted above, but these measures need to be studied to ensure that measures which are more effective are affected at great heights. I therefore, have created a model in Insight Maker to check how these measures prove their effectiveness over time.

Clone of Acomplex systems model of the relationships among different players in the town of Burnie, Tasmania - Nguyen Dang Khoa 520572
Insight diagram
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

Clone of Infectious Disease Model (Version 4.0)
Insight diagram
Check how different times of recovery and deths in cases of covid-19 infulence 2 key mortality indicators:
Overall mortalityr ate (ratio of all deaths to all cases)
Resolved cases mortality rate (ratio of all deaths to recovered cases)

Assumed delays are:
5 weeks for recovery cases
2 weeks for death cases
Delays are built into conveyor stocks, so cannot be adjusted by slider

keep in mind Insigth uses similar but made-up numbers and linear flow of new cases (in opposition to exponential in real world)  
Understanding Covid-19 mortality
Insight diagram
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.
SEIR Model for COVID-19 in Indonesia - v2
Insight diagram
COVID-19 outbreak model brief description

The model stimulated the COVID-19 outbreak at Burnie in Tasmania. The pandemic spread was driven by infection rate, death rate, recovery rate, and government policy.

The government policy reduces the infection in some way, but it also decreases the physical industry. Online industry plays a vital role during the pandemic and brings more opportunities to the world economy. 

The vaccination directly reduces the infection rate. The national border will open as long as residents have been fully vaccinated. 

Assumption: 
The model was created based on different rates, including infection rate, death rate, testing rate and recovered rate. There will be difference between the real cases and the model. 

The model only list five elements of government policies embracing vaccination rate, national border and state border restrictions, public health orders, and business restrictions. Public health order includes social distance and residents should wear masks in high spread regions. 

This model only consider two industries which are physical industry, like manufacturer, retailers, or hospitality industries, and online industry. During the pandemic, employees star to work from home and students can have online class. Therefore, the model consider the COVID-19 has positive impact on online industry. 

Interesting insights:
The susceptible will decrease dramatically in first two weeks due to high infection rate and low recovery rate and government policy. After that, the number of susceptible will have a slight decline. 

The death toll and recovery rate was increased significantly in the first two weeks due to insufficient healthy response. And the trend will become mild as government policy works. 



Clone of BMA708_DafeiMeng_567691_Model of COVID-19 Outbreak in Burnie, Tasmania
Insight diagram
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy, though, of higher detected cases is negative. 




Burnie COVID-19 outbreak demo model version 2
39 5 months ago
Insight diagram
Collapse of the economy, not just recession, is now very likely. To give just one possible cause, in the U.S. the fracking industry is in deep trouble. It is not only that most fracking companies have never achieved a free cash flow (made a profit) since the fracking boom started in 2008, but that  an already very weak  and unprofitable oil industry cannot cope with extremely low oil prices. The result will be the imminent collapse of the industry. However, when the fracking industry collapses in the US, so will the American economy – and by extension, probably, the rest of the world economy. To grasp a second and far more serious threat it is vital to understand the phenomenon of ‘Global Dimming’. Industrial activity not only produces greenhouse gases, but emits also sulphur dioxide which converts to reflective sulphate aerosols in the atmosphere. Sulphate aerosols act like little mirrors that reflect sunlight back into space, cooling the atmosphere. But when economic activity stops, these aerosols (unlike carbon dioxide) drop out of the atmosphere, adding perhaps as much as 1° C to global average temperatures. This can happen in a very short period time, and when it does mankind will be bereft of any means to mitigate the furious onslaught of an out-of-control and merciless climate. The data and the unrelenting dynamic of the viral pandemic paint bleak picture.  As events unfold in the next few months,  we may discover that it is too late to act,  that our reign on this planet has, indeed,  come to an abrupt end?  
Covid 19 - irreversible and catastrophic consequences
Insight diagram
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

Infectious Disease Model (Version 3.0)
Insight diagram
This basic pandemic model explores the dynamics and healthcare burden associated with of a novel infection.
Pandemic: Exploring the Dynamics of a Novel Infection