# Mat375 Models

These models and simulations have been tagged “Mat375”.

This insight implements integration as an InsightMaker model.

It is important to use Euler's method, with Simulation Length equal to n, in Seconds.

Fun to try a couple of different cases, so I have built four choices into this example. You can choose the function ("Function Choice" of 0, 1, 2, or 3) using the slider.

Andy Long
Spring, 2020

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

Thanks to Jacob Englert for the model if-then-else structure.

Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at
https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions
Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,
WolfDeathRateStart,
MooseBirthRateStart,
MooseDeathRateFactorStart,
moStart,
woStart} =
{0.000267409,
0.239821,
0.269755,
0.0113679,
591,
23.};

This is an introductory example from Olinick's book An Introduction to Mathematical Models in the Social and Life Sciences. ​

"A recent study focused on the relationship between the birth weights of English women and the birth weights of their daughters. The weights were split into three categories: low (below 6 pounds), average (between 6 and 8 pounds), and high (above 8 pounds). Among women whose own birth weights were low, 50 percent of the daughters had low birth weights, 45 percent had average weights, and 5 percent had high weights. Women with average birth weights had daughters with average weights half of the time, while the half was split evenly between low and high categories. Women with high birth weights had female babies with high weights 40 percent of the time, with low and average weights each occuring 30 percent of the time." p. 274-275.

For the Markov chain, you should make sure that you're taking time steps of length 1 in the settings, and Euler. RK-4 effectively looks beyond a single previous step, so it has a sort of memory!

Thanks Mike! Interesting examples, as always....
Andy Long

Next up: an SIR.
This is an introductory example from Olinick's book An Introduction to Mathematical Models in the Social and Life Sciences. ​

"A recent study focused on the relationship between the birth weights of English women and the birth weights of their daughters. The weights were split into three categories: low (below 6 pounds), average (between 6 and 8 pounds), and high (above 8 pounds). Among women whose own birth weights were low, 50 percent of the daughters had low birth weights, 45 percent had average weights, and 5 percent had high weights. Women with average birth weights had daughters with average weights half of the time, while the half was split evenly between low and high categories. Women with high birth weights had female babies with high weights 40 percent of the time, with low and average weights each occuring 30 percent of the time." p. 274-275.

For the Markov chain, you should make sure that you're taking time steps of length 1 in the settings, and Euler. RK-4 effectively looks beyond a single previous step, so it has a sort of memory!

Thanks Mike! Interesting examples, as always....
Andy Long

Next up: an SIR.
This is an example from Cushing's book An Introduction to Structured Population Dynamics. ​

The parameters initially included reproduce the bifurcation results on p. 39 of Cushing's manuscript.
The tuning parameter is b, the birthrate.

p. 37: The LPA flour beetle model.

The bifurcation diagram for parameter b is on page 39;
The bifurcation diagram for mu adult is on p. 59;
The bifurcation diagram for C pa is on p. 60.

Andy Long

This is an example from Cushing's book An Introduction to Structured Population Dynamics. ​

The parameters initially included reproduce the bifurcation results on p. 39 of Cushing's manuscript.
The tuning parameter is b, the birthrate.

p. 37: The LPA flour beetle model.

The bifurcation diagram for parameter b is on page 39;
The bifurcation diagram for mu adult is on p. 59;
The bifurcation diagram for C pa is on p. 60.

Andy Long

This is an introductory example from Olinick's book An Introduction to Mathematical Models in the Social and Life Sciences. ​

The Galla people have a most unusual set of age classes for their males (five of them). In this model, we look at the ages at which fathers enter, by comparison with their sons.

Thanks Mike! Interesting examples, as always....
Andy Long
This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters.

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

This is an example from Cushing's book An Introduction to Structured Population Dynamics. ​

The parameters initially included reproduce the bifurcation results on p. 39 of Cushing's manuscript.
The tuning parameter is b, the birthrate.

p. 37: The LPA flour beetle model.

The bifurcation diagram for parameter b is on page 39;
The bifurcation diagram for mu adult is on p. 59;
The bifurcation diagram for C pa is on p. 60.

Andy Long

This is an example from Cushing's book An Introduction to Structured Population Dynamics. ​

The parameters initially included reproduce the bifurcation results on p. 39 of Cushing's manuscript.
The tuning parameter is b, the birthrate.

p. 37: The LPA flour beetle model.

The bifurcation diagram for parameter b is on page 39;
The bifurcation diagram for mu adult is on p. 59;
The bifurcation diagram for C pa is on p. 60.

Andy Long

This is an example from Cushing's book An Introduction to Structured Population Dynamics. ​

The parameters initially included reproduce the bifurcation results on p. 39 of Cushing's manuscript.
The tuning parameter is b, the birthrate.

p. 37: The LPA flour beetle model.

The bifurcation diagram for parameter b is on page 39;
The bifurcation diagram for mu adult is on p. 59;
The bifurcation diagram for C pa is on p. 60.

Andy Long

This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters.

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

Spring, 2020:

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-6, we recover their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
This is an introductory example from Olinick's book An Introduction to Mathematical Models in the Social and Life Sciences. ​

Next up: and SIR, and his interesting model of female birth weights.
This is an example from Cushing's book An Introduction to Structured Population Dynamics. ​

The parameters initially included reproduce the bifurcation results on p. 39 of Cushing's manuscript.
The tuning parameter is b, the birthrate.

p. 37: The LPA flour beetle model.

The bifurcation diagram for parameter b is on page 39;
The bifurcation diagram for mu adult is on p. 59;
The bifurcation diagram for C pa is on p. 60.

Andy Long

This is an example from Cushing's book An Introduction to Structured Population Dynamics. ​

The parameters initially included reproduce the bifurcation results on p. 39 of Cushing's manuscript.
The tuning parameter is b, the birthrate.

p. 37: The LPA flour beetle model.

The bifurcation diagram for parameter b is on page 39;
The bifurcation diagram for mu adult is on p. 59;
The bifurcation diagram for C pa is on p. 60.

Andy Long

This is an introductory example from Olinick's book An Introduction to Mathematical Models in the Social and Life Sciences. ​

Next up: and SIR, and his interesting model of female birth weights.
This is an example from Cushing's book An Introduction to Structured Population Dynamics. ​

The parameters initially included reproduce the bifurcation results on p. 39 of Cushing's manuscript.
The tuning parameter is b, the birthrate.

p. 37: The LPA flour beetle model.

The bifurcation diagram for parameter b is on page 39;
The bifurcation diagram for mu adult is on p. 59;
The bifurcation diagram for C pa is on p. 60.

Andy Long

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at
https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions
Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,
WolfDeathRateStart,
MooseBirthRateStart,
MooseDeathRateFactorStart,
moStart,
woStart} =
{0.000267409,
0.239821,
0.269755,
0.0113679,
591,
23.};

This is an introductory example from Olinick's book An Introduction to Mathematical Models in the Social and Life Sciences. ​

Galla with the different classes.

Thanks Mike! Interesting examples, as always....
Andy Long

Next up: an SIR.
This is an example I thought of after reading Olinick's book An Introduction to Mathematical Models in the Social and Life Sciences. ​

It's an SIR-type model, but one where the equilibrium (ws,wi,wr) is always the same, even as the weights in the transition matrix change.

Actually it might be better to think of this as a poisoning model: the rate of infection is constant, and independent of the existence of an infected population. That's more like disease due to an environmental effect (e.g. lead-poisoning from smelters, or mercury poisoning from the burning of coal). So infected would mean "effected", and "recovered" might be "treated" -- and ultimately released, to be exposed again.

This shows that the equilibrium does not determine the transition probabilities: two different transition matrices can have the same ultimate equilibrium.

There is a constraint on the infection rate that I haven't figured out how to build in:

InfectionRate < Min[1,wi/ws, wr/ws]

I can allow InfectionRate to vary up to 1 if I take
ws < wi
and
ws < wr
However if you violate that, you'll get interesting solutions with negative values of populations. The dynamics are pretty interesting in that case, however! If you want to see them, you'll have to remove the constraints that I put on the parameters in the Recover and LossOfImmunity parameters.

Thanks Mike! Interesting examples, as always....
Andy Long

This is an introductory example from Olinick's book An Introduction to Mathematical Models in the Social and Life Sciences. ​

Galla age distribution model.

Thanks Mike! Interesting examples, as always....
Andy Long

Next up: an SIR.