#### Clone of THE BUTTERFLY EFFECT

##### lee gwo guang

Sensitivity To Initial Conditions

(sensitive dependence on initial conditions)

Navier Stokes Equations

Lorenz Attractor

Chaos Theory, Disorder and Entropy

Although the butterfly effect may appear to be an esoteric and unlikely behavior, it is exhibited by very simple systems: for example, a ball placed at the crest of a hill may roll into any of several valleys depending on, among other things, slight differences in initial position. Similarly the direction a pencil falls when held on its tip, or an universe during its initial stages.These attractors apply to social systems and economics showing jumps between potential wells, and showing the strategic scaling behavior of rotating and cyclic systems whether they be social, economic, or complex spin or rotation of planets affecting weather and climate or spin of galaxies or elementary particles, or even a rock on the end of a piece of string.

What Playing with numbers is all about :)

If M is the state space for the map , then displays sensitive dependence to initial conditions if for any x in M and any δ > 0, there are y in M, with such that

Environment Economics Finance Mathematics Physics Biology Health Fractals Chaos TURBULENCE Engineering Navier Stokes Science Demographics Population Growth BIFURCATIONS MTBF Risk Lorenz Butterfly STIC Disorder Entropy Strategy Weather

- 1 year 2 months ago

#### Clone of THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES CHAOTIC TURBULENCE (+controls)

##### Lingguo Bu

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)

Environment Economics Finance Mathematics Physics Biology Health Fractals Chaos TURBULENCE Engineering Navier Stokes Supply Demand Strategy

- 6 years 2 months ago

#### Clone of THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES CHAOTIC TURBULENCE (+controls)

##### Dr THOMAS ILIN

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)

Environment Economics Finance Mathematics Physics Biology Health Fractals Chaos TURBULENCE Engineering Navier Stokes Supply Demand Strategy

- 5 years 6 months ago

#### Clone of Clone of BATHTUB MEAN TIME BETWEEN FAILURE (MTBF) RISK

##### Alena Peskova

F(t) = 1 - e ^ -λt Where • F(t) is the probability of failure • λ is the failure rate in 1/time unit (1/h, for example) • t is the observed service life (h, for example)

The inverse curve is the trust time

On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.

This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.

A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime,

B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

**Early Life**If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

**Useful Life**

The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.

**Wearout**

The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period.

Environment Economics Finance Mathematics Physics Biology Health Fractals Chaos TURBULENCE Engineering Navier Stokes Science Demographics Population Growth BIFURCATIONS MTBF Risk Failure Strategy

- 5 years 1 day ago

#### Clone of WORLD2020 to PLANET2020

##### Guy Lakeman

**THE 2020 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION. WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS**

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDEDUse the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

Environment Demographics Population Growth Population Weather Climate Failure Death Mortality Science Technology Engineering Strategy Economics Politics Fertility Health Services Resources Land Jobs Labor Urban Industrial Rural Lifetime Pollution Regeneration Yield Ocean Sea Fish Plants Animals Flood Drought Loss Hurricane Typhoon Tornado Cyclone Agriculture Food Energy Nuclear Solar Resource Graphene Silicene Transport

- 8 months 2 weeks ago

#### Clone of POPULATION LOGISTIC MAP (WITH FEEDBACK)

##### Ana Cristina Beja

the maximum population is set to be one million, and the growth rate constant mu = 3. Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.

Environment MATHS Mathematics Chaos Fractals BIFURCATION Model Economics Finance TURBULENCE Population Growth DECAY STABILITY SUSTAINABLE Engineering Science Demographics Strategy

- 4 years 4 months ago

#### Clone of Clone of 2014 Weather & Climate Extreme Loss of Arable Land and Ocean Fertility - The World3+ Model: Forecaster

##### Maria Camila Angel

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDEDUse the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

Environment Demographics Population Growth Population Weather Climate Failure Death Mortality Science Technology Engineering Strategy Economics Politics Fertility Health Services Resources Land Jobs Labor Urban Industrial Rural Lifetime Pollution Regeneration Yield Ocean Sea Fish Plants Animals

- 4 years 3 weeks ago

#### Clone of BATHTUB MEAN TIME BETWEEN FAILURE (MTBF) RISK

##### james2

F(t) = 1 - e ^ -λt Where • F(t) is the probability of failure • λ is the failure rate in 1/time unit (1/h, for example) • t is the observed service life (h, for example)

The inverse curve is the trust time

On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.

This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.

A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime,

B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

**Early Life**If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

**Useful Life**

The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.

**Wearout**

The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period.

Environment Economics Finance Mathematics Physics Biology Health Fractals Chaos TURBULENCE Engineering Navier Stokes Science Demographics Population Growth BIFURCATIONS MTBF Risk Failure Strategy

- 6 years 9 months ago

#### Clone of THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES CHAOTIC TURBULENCE (+controls)

##### Agustin Marcos

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)

Environment Economics Finance Mathematics Physics Biology Health Fractals Chaos TURBULENCE Engineering Navier Stokes Supply Demand Strategy

- 4 years 9 months ago

#### Clone of 2014 Weather & Climate Extreme Loss of Arable Land and Ocean Fertility - The World3+ Model: Forecaster

##### T. Seemann

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDEDUse the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

Environment Demographics Population Growth Population Weather Climate Failure Death Mortality Science Technology Engineering Strategy Economics Politics Fertility Health Services Resources Land Jobs Labor Urban Industrial Rural Lifetime Pollution Regeneration Yield Ocean Sea Fish Plants Animals

- 3 years 10 months ago

#### Clone of THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES CHAOTIC TURBULENCE (+controls)

##### Schmooster

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)

- 4 years 10 months ago

#### Clone of 2014 Weather & Climate Extreme Loss of Arable Land and Ocean Fertility - The World3+ Model: Forecaster

##### Janos Abonyi

Environment Demographics Population Growth Population Weather Climate Failure Death Mortality Science Technology Engineering Strategy Economics Politics Fertility Health Services Resources Land Jobs Labor Urban Industrial Rural Lifetime Pollution Regeneration Yield Ocean Sea Fish Plants Animals

- 2 years 6 months ago

#### Clone of BATHTUB MEAN TIME BETWEEN FAILURE (MTBF) RISK

##### Alejandro Abellan

F(t) = 1 - e ^ -λt Where • F(t) is the probability of failure • λ is the failure rate in 1/time unit (1/h, for example) • t is the observed service life (h, for example)

The inverse curve is the trust time

On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.

This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.

A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime,

B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

**Early Life**If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

**Useful Life**

The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.

**Wearout**

The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period.

Environment Economics Finance Mathematics Physics Biology Health Fractals Chaos TURBULENCE Engineering Navier Stokes Science Demographics Population Growth BIFURCATIONS MTBF Risk Failure Strategy

- 3 years 1 month ago

#### Clone of THE BUTTERFLY EFFECT

##### Mirko Théodoloz

Sensitivity To Initial Conditions

(sensitive dependence on initial conditions)

Navier Stokes Equations

Lorenz Attractor

Chaos Theory, Disorder and Entropy

Although the butterfly effect may appear to be an esoteric and unlikely behavior, it is exhibited by very simple systems: for example, a ball placed at the crest of a hill may roll into any of several valleys depending on, among other things, slight differences in initial position. Similarly the direction a pencil falls when held on its tip, or an universe during its initial stages.These attractors apply to social systems and economics showing jumps between potential wells, and showing the strategic scaling behavior of rotating and cyclic systems whether they be social, economic, or complex spin or rotation of planets affecting weather and climate or spin of galaxies or elementary particles, or even a rock on the end of a piece of string.

What Playing with numbers is all about :)

If M is the state space for the map , then displays sensitive dependence to initial conditions if for any x in M and any δ > 0, there are y in M, with such that

Environment Economics Finance Mathematics Physics Biology Health Fractals Chaos TURBULENCE Engineering Navier Stokes Science Demographics Population Growth BIFURCATIONS MTBF Risk Lorenz Butterfly STIC Disorder Entropy Strategy Weather

- 5 years 2 months ago

#### INDUSTRIAL IMPACT ON RESOURCES

##### Guy Lakeman

**INDUSTRIAL IMPACT ON RESOURCES THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS**

Environment Demographics Population Growth Population Weather Climate Failure Death Mortality Science Technology Engineering Strategy Economics Politics Fertility Health Services Resources Land Jobs Labor Urban Industrial Rural Lifetime Pollution Regeneration Yield Ocean Sea Fish Plants Animals Flood Drought Loss Hurricane Typhoon Tornado Cyclone Agriculture Food Energy Nuclear Solar Resource Graphene Silicene Transport

- 9 months 19 hours ago

#### Clone of Clone of THE BUTTERFLY EFFECT

##### Ana Cristina Beja

Sensitivity To Initial Conditions

(sensitive dependence on initial conditions)

Navier Stokes Equations

Lorenz Attractor

Chaos Theory, Disorder and Entropy

Although the butterfly effect may appear to be an esoteric and unlikely behavior, it is exhibited by very simple systems: for example, a ball placed at the crest of a hill may roll into any of several valleys depending on, among other things, slight differences in initial position. Similarly the direction a pencil falls when held on its tip, or an universe during its initial stages.These attractors apply to social systems and economics showing jumps between potential wells, and showing the strategic scaling behavior of rotating and cyclic systems whether they be social, economic, or complex spin or rotation of planets affecting weather and climate or spin of galaxies or elementary particles, or even a rock on the end of a piece of string.

What Playing with numbers is all about :)

If M is the state space for the map , then displays sensitive dependence to initial conditions if for any x in M and any δ > 0, there are y in M, with such that

Environment Economics Finance Mathematics Physics Biology Health Fractals Chaos TURBULENCE Engineering Navier Stokes Science Demographics Population Growth BIFURCATIONS MTBF Risk Lorenz Butterfly STIC Disorder Entropy Strategy Weather

- 4 years 2 months ago

#### Clone of Clone of Clone of BATHTUB MEAN TIME BETWEEN FAILURE (MTBF) RISK

##### Guilherme Werpel Fernandes

F(t) = 1 - e ^ -λt Where • F(t) is the probability of failure • λ is the failure rate in 1/time unit (1/h, for example) • t is the observed service life (h, for example)

The inverse curve is the trust time

On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.

This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.

A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime,

B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

**Early Life**If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

**Useful Life**

The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.

**Wearout**

The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period.

- 3 years 11 months ago

#### Clone of POPULATION LOGISTIC MAP (WITH FEEDBACK)

##### Teresa Nani

the maximum population is set to be one million, and the growth rate constant mu = 3. Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.

Environment MATHS Mathematics Chaos Fractals BIFURCATION Model Economics Finance TURBULENCE Population Growth DECAY STABILITY SUSTAINABLE Engineering Science Demographics Strategy

- 3 years 11 months ago

#### Clone of THE BUTTERFLY EFFECT

##### Sugiharto

Sensitivity To Initial Conditions

(sensitive dependence on initial conditions)

Navier Stokes Equations

Lorenz Attractor

Chaos Theory, Disorder and Entropy

Although the butterfly effect may appear to be an esoteric and unlikely behavior, it is exhibited by very simple systems: for example, a ball placed at the crest of a hill may roll into any of several valleys depending on, among other things, slight differences in initial position. Similarly the direction a pencil falls when held on its tip, or an universe during its initial stages.These attractors apply to social systems and economics showing jumps between potential wells, and showing the strategic scaling behavior of rotating and cyclic systems whether they be social, economic, or complex spin or rotation of planets affecting weather and climate or spin of galaxies or elementary particles, or even a rock on the end of a piece of string.

What Playing with numbers is all about :)

If M is the state space for the map , then displays sensitive dependence to initial conditions if for any x in M and any δ > 0, there are y in M, with such that

- 5 years 10 months ago

#### Clone of EasyJet Fliers Model

##### david

Model of growth from diffusion from John Morecroft's Strategic Modelling and Business Dynamics Book Ch6 p174-191. A discussion of a bigger model of People's Express is in http://bit.ly/HdaGy4 for a related You Tube video by John Morecroft on Reflections on System Dynamics and Strategy

- 7 years 5 months ago

#### Clone of BATHTUB MEAN TIME BETWEEN FAILURE (MTBF) RISK

##### Guilherme Werpel Fernandes

F(t) = 1 - e ^ -λt Where • F(t) is the probability of failure • λ is the failure rate in 1/time unit (1/h, for example) • t is the observed service life (h, for example)

The inverse curve is the trust time

On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.

This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.

A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime,

B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

**Early Life**If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

**Useful Life**

The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.

**Wearout**

The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period.

- 3 years 11 months ago

#### Clone of OVERSHOOT GROWTH INTO TURBULENCE

##### Gary Leonard

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Environment Economics Finance Mathematics Physics Biology Health Fractals Chaos TURBULENCE Engineering Navier Stokes Science Demographics Population Growth Strategy Weather

- 4 years 5 months ago

#### Clone of Clone of Clone of 2014 Weather & Climate Extreme Loss of Arable Land and Ocean Fertility - The World3+ Model: Forecaster

##### Bechara Assouad

- 3 years 7 months ago

#### Clone of OVERSHOOT GROWTH INTO TURBULENCE

##### George J F Mackintosh

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Environment Economics Finance Mathematics Physics Biology Health Fractals Chaos TURBULENCE Engineering Navier Stokes Science Demographics Population Growth Strategy Weather

- 4 years 6 months ago