This model represents the core (more connected) assumptions of the proposed energy bill HR 4286
This model represents the core (more connected) assumptions of the proposed energy bill HR 4286
This simulation examines carrying capacity, based on a given cropland input in acres.
This simulation examines carrying capacity, based on a given cropland input in acres.
This model prototypes the working of an Smart Grid with Electric Vehicles   The objective is testing the theoretical advantages of batteries (also batteries in Electric Vehicles) in combination with renewable energies. The model considers two houses, that store energy both in Electric Vehicles (Vehi
This model prototypes the working of an Smart Grid with Electric Vehicles

The objective is testing the theoretical advantages of batteries (also batteries in Electric Vehicles) in combination with renewable energies. The model considers two houses, that store energy both in Electric Vehicles (Vehicle to Grid), and in a communal battery.

Except when specified otherwise, the units of all variables are expressed in W/h.

Press "Story" in the lower bar for a guided tour over the model. Better seen at 50% zoom.

by Carlos Varela (cvarela@gmx.at)
Buying and storing electricity when it is cheap, and selling it when it is expensive. What are the benefits, both public and private?
Buying and storing electricity when it is cheap, and selling it when it is expensive. What are the benefits, both public and private?

Buying and storing electricity when it is cheap, and selling it when it is expensive. What are the benefits, both public and private?
Buying and storing electricity when it is cheap, and selling it when it is expensive. What are the benefits, both public and private?

This model prototypes the working of an Smart Grid with Electric Vehicles   The
 objective is testing the theoretical advantages of batteries (also 
batteries in Electric Vehicles) in combination with renewable energies. 
The model considers two houses, that store energy both in Electric 
Vehicles (
This model prototypes the working of an Smart Grid with Electric Vehicles

The objective is testing the theoretical advantages of batteries (also batteries in Electric Vehicles) in combination with renewable energies. The model considers two houses, that store energy both in Electric Vehicles (Vehicle to Grid), and in a communal battery.

Except when specified otherwise, the units of all variables are expressed in W/h.

Press "Story" in the lower bar for a guided tour over the model. Better seen at 50% zoom.

by Carlos Varela (cvarela@gmx.at)
Buying and storing electricity when it is cheap, and selling it when it is expensive. What are the benefits, both public and private?
Buying and storing electricity when it is cheap, and selling it when it is expensive. What are the benefits, both public and private?

Buying and storing electricity when it is cheap, and selling it when it is expensive. What are the benefits, both public and private?
Buying and storing electricity when it is cheap, and selling it when it is expensive. What are the benefits, both public and private?

Buying and storing electricity when it is cheap, and selling it when it is expensive. What are the benefits, both public and private?
Buying and storing electricity when it is cheap, and selling it when it is expensive. What are the benefits, both public and private?

The statement that there can be no economic activity
without  energy and that fossil fuels are
finite contrasts with the fact that money is not finite and can be created by governments
via their central banks at zero marginal cost whenever needed.

 An important fact about COAL, GAS and OIL (even
wh
The statement that there can be no economic activity without  energy and that fossil fuels are finite contrasts with the fact that money is not finite and can be created by governments via their central banks at zero marginal cost whenever needed.

An important fact about COAL, GAS and OIL (even when produced via fracking) is that their net energy ratios are falling rapidly. In other words the energy needed to extract a given quantity of fossil fuels is constantly increasing. This ratio (Energy Invested on Energy Returned - EIOER) provides yet another warning that we can no longer rely on fossil fuels to power our economies. We cannot wait until the ratio falls to 1/1 before we invest seriously in alternative sources of energy, because by then industrial society as we know it doday will have ceased to exist. 

PS: A link between growth in energy consumption and GDP growth is clearly illustrated on slide 13 of Gail Tverberg's presentaion entitled ''Ooop! The world economy depends on an energy-related bubble''. In fact, the slide shows that growth in energy consumption usually precedes GDP growth.

https://gailtheactuary.files.wordpress.com/2015/10/oops-debt-bubble-10_30_15.pdf

To maintain economic wealth (roads, hospitals, power
lines, etc.) power needs to be consumed. The same applies to economic activity,
since any activity requires the consumption of energy. According to the Environmental Protection Agency, the burning
of fossil fuels was responsible for 79 percent of
To maintain economic wealth (roads, hospitals, power lines, etc.) power needs to be consumed. The same applies to economic activity, since any activity requires the consumption of energy. According to the Environmental Protection Agency, the burning of fossil fuels was responsible for 79 percent of U.S. greenhouse gas emissions in 2010. So whilst economic activity takes place fossil fuels will be burned and CO2 emissions are unavoidable - unless we use exclusively renewable energy resources, which is not likely to occur very soon. However, the increasing CO2 concentrations in the atmosphere will have negative consequences, such droughts, floods, crop failures, etc. These effects represent limits to economic growth. The CLD illustrates some of the more prominent negative feedback loops that act as a break on economic growth and wealth.  As the negative feedback loops (B1-B4) get stronger, an interesting question is, 'will a sharp reduction in economic wealth and unavoidable recession lead to wide-spread food riots and disturbances?'

Afirmația că nu poate exista activitate economică fără energie și că combustibilii fosili sunt finiți contrastează cu faptul că banii nu sunt finiți și pot fi creați de guverne prin intermediul băncilor lor centrale la costuri marginale zero ori de câte ori este nevoie.
         Un fapt important de
Afirmația că nu poate exista activitate economică fără energie și că combustibilii fosili sunt finiți contrastează cu faptul că banii nu sunt finiți și pot fi creați de guverne prin intermediul băncilor lor centrale la costuri marginale zero ori de câte ori este nevoie.
Un fapt important despre cărbunele, gazul și petrolul (mai ales atunci când sunt produse prin fracking) este că raporturile lor energetice nete scad rapid. Cu alte cuvinte, energia necesară pentru a extrage o anumită cantitate de combustibili fosili este în continuă creștere. Raportul în scădere „EROI” (Returul Energiei asupra Energiei Investite) oferă încă un avertisment că nu ne mai putem baza pe combustibilii fosili pentru a ne alimenta economiile. În 1940 a fost nevoie de energia unui singur baril de petrol pentru a extrage 100. Astăzi, energia unui baril de petrol va da doar 15. Nu putem aștepta până când raportul scade la 1/1 înainte de a investi serios în surse alternative de energie, pentru că până atunci societatea industrială așa cum o cunoaștem în prezent va fi încetat să mai existe. Un EROI de 1:1 înseamnă că este nevoie de energia unui baril de petrol pentru a extrage un baril de petrol - producția de petrol s-ar opri pur și simplu!

   THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER REL

THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

Buying and storing electricity when it is cheap, and selling it when it is expensive. What are the benefits, both public and private?
Buying and storing electricity when it is cheap, and selling it when it is expensive. What are the benefits, both public and private?

A simple simulation​ of a house losing heat at a rate based on indoor vs. outdoor temperature difference, and turning a heating system on and off to maintain indoor temperature.
A simple simulation​ of a house losing heat at a rate based on indoor vs. outdoor temperature difference, and turning a heating system on and off to maintain indoor temperature.
The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model is a first attempt to illustrate the impact of EROI in large-scale e
The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model is a first attempt to illustrate the impact of EROI in large-scale energy transition using a system dynamics approach. The variables of primary interest here are: 1) net energy available to "the rest of the economy" as renewable penetration increases [Total final energy services out to the economy]; and 2) the size of the energy sector as a proportion of overall economic activity, treating energy use as a very rough proxy for size [Energy services ratio].
This model aggregates energy use in the form of fuels and electricity as a single variable, total final energy services, and treats the global economy as a single closed system.
The model includes all major incumbent energy sources, and assumes a transition to wind, PV, hydro and nuclear generated electricity, plus biomass electricity and fuels. Hydro, biomass and nuclear growth rates are built into the model from the outset, and wind and PV emplacement rates respond to the built-in retirement rates for fossil energy sources, by attempting to make up the difference between the historical maximum total energy services out to the global economy, and the current total energy services out. Intermittency of PV and wind are dealt with via Li-ion battery storage. Note, however, that seasonal variation of PV is not addressed i.e. PV is modeled using annual and global average parameters. For this to have anything close to real world validity, this would require that all PV capacity is located in highly favourable locations in terms of annual average insolation, and that energy is distributed from these regions to points of end use. The necessary distribution infrastructure is not included in the model at this stage.
It is possible to explore the effect of seasonal variation with PV assumed to be distributed more widely by de-rating capacity factor and increasing the autonomy period for storage.

This version of the model takes values for emplaced capacities of conventional sources (i.e. all energy sources except wind and PV) as exogenous inputs, based on data generated from earlier endogenously-generated emplaced capacities (for which emplacement rates as a proportion of existing installed capacity were the primary exogenous input).
Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?
Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?