A detailed description of all model input parameters is available
here. These are discussed further
here and
here.
Update 6 August 2018 (v2.8): Updated historical wind and PV deployment
data for 2016-2017, adding projected PV deployment for 2018. Data via
https://en.wikipedia.org/wiki/Growth_of_photovoltaics and
https://en.wikipedia.org/wiki/Wind_power_by_country.
Update 26 October 2017 (v2.7): Updated historical wind and PV deployment data for 2015-2016, adding projected PV deployment for 2017. Data via https://en.wikipedia.org/wiki/Growth_of_photovoltaics and https://en.wikipedia.org/wiki/Wind_power_by_country.
Update 18 December 2016 (v2.7): Added feature to calculate a global EROI index for all energy sources plus intermittency buffering (currently batteries only, but this could be diversified). The index is calculated specifically in terms of
energy services in the form of work and heat. That is, it takes the aggregated energy services made available by all sources as the energy output term, and the energy services required to provided the buffered output as the energy input term.
Update 29 June 2016 (v2.6): Added historical emplacement for wind and PV capacity. The maximum historical emplacement rates are then maintained from year 114/115 until the end of the model period. This acts as a base emplacement rate that is then augmented with the contribution made via the feedback control mechanism. Note that battery buffering commences only once the additional emplacement via the feedback controller kicks in. This means that there is a base capacity for both wind and PV for which no buffering is provided, slightly reducing the energy services required for wind and PV supplies, as well as associated costs. Contributions from biomass and nuclear have also been increased slightly, in line with the earlier intention that these should approximately double during the transition period. This leads to a modest reduction in the contributions required from wind and PV.
Added calculation of global mean conversion efficiency energy to services on primary energy basis. This involves making an adjustment to the gross energy outputs for all thermal electricity generation sources. The reason for this is that standard EROI analysis methodology involves inclusion of energy inputs on a primary energy equivalent basis. In order to convert correctly between energy inputs and energy
service inputs, the reference conversion efficiency must therefore be defined on a primary energy basis. Previously, this conversion was made on the basis of the mean conversion efficiency from final energy to energy services.
Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.
Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.
Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.
Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.
Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.
Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.
**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in
this Excel spreadsheet.
Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**
The original "standard run" version of the model is available
here.