This version 8B of the   CAPABILITY DEMONSTRATION   model. A net Benefit ROI has been added. The Compare results feature allows comparison of alternative intervention portfolios.  Note that the net causal interactions have been effectively captured in a very scoped and/or simplified forma
This version 8B of the CAPABILITY DEMONSTRATION model. A net Benefit ROI has been added. The Compare results feature allows comparison of alternative intervention portfolios.  Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Relative magnitudes and durations of impact remain in need of further data & adjustment (calibration). In the interests of maintaining steady progress and respecting budget & time constraints, significant simplifying assumptions have been made: assumptions that mitigate both completeness & accuracy of the outputs.  This model meets the criteria for a Capability demonstration model, but should not be taken as complete or realistic in terms of specific magnitudes of effect or sufficient build out of causal dynamics.  Rather, the model demonstrates the interplay of a minimum set of causal forces on a net student progress construct -- as informed and extrapolated from the non-causal research literature.
Provided further interest and funding, this  basic capability model may further developed and built out to: higher provenance levels -- coupled with increased factorization, rigorous causal inclusion and improved parameterization.
  Model Explanation       

 The model to be simulate the possible
crime patterns among the youth population of Bourke, where levels of
alienation, policing and community engagement expenditure can be manipulated. Here
the youth in Bourke have a minimum percentage of the interested participated
on t

Model Explanation


The model to be simulate the possible crime patterns among the youth population of Bourke, where levels of alienation, policing and community engagement expenditure can be manipulated. Here the youth in Bourke have a minimum percentage of the interested participated on the community activities which government aims to improve their lifestyle and therefore they can specified on the reduce the rate of criminal activity. 

Assumption:

The assumption of the 2530 youth of the Bourke n the population susceptible to committing crime and simulations of criminal tendencies are only based on the factor presented, no external influences

Variable:

Alienation includes any factors that can increase the like hood of youth to commit crime such as exposure to domestic violence, household income, education level, and family background community engagement expenditure is the total monies budgeted into community activities to develop youths in and out of growth detention policing is the amount of police placed onto patrol in the town of Bourke to reinforce safety and that the law is abided.

Stocks: 

conviction rate is set to 60% A growth detention sentence for convicted criminals is set to 3 months the top 30% of the most server offenders are sent to rehabilitation for 3 months, to which they return to Bourke assuming in a better state and less likely to repeat a petty crime community activities are set to last 3 months to be calculating the align with the seasons: sporting club of the growth of community participants have 20% change of being disengaged as it may not align with their interests investments into policing are felt immediately & community engagement expenditure has a delay of 3 months. 

Finding the interest:

1. Alienation of the set maximum value is 0.2, policing and community engagement set to minimum shows a simulation where by all criminals are in town rather than being expedited and placed into growth detention even after a base value on the 500 youth placed into growth detention- this shouts that budget is required to control the overwhelming number of criminal youth as they overrun brouke.

2.  Set of community activity they can identified the 0.01 policing to max & alienation to max. The lack of social crime has caused much trouble among young people. The Police Immigration Police has not been deployed to the city of town, which has such a crime rate. Growth prevention can only last a long time, and all young people cannot be rehabilitated, so if they continue to commit crimes.

3. It plays an important role in considering the crime of young people. In order to keep the criminal activity minimal, the bulk of the budgets in police and social involvement among young people must be put at risk. Realistically, budget in a small town is an important factor, it may be engagement. 

4. To be set the police value 0.2, and engaged alienation expenditure value 0.04 of the community activities that can use of improve the youth in town of Bourke





 

 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
Clusters of interacting methods for improving health services network design and delivery. Includes Forrester quotes on statistical vs SD methods and the Modeller's dilemma. Simplified version of  IM-14982  combined with  IM-17598  and  IM-9773
Clusters of interacting methods for improving health services network design and delivery. Includes Forrester quotes on statistical vs SD methods and the Modeller's dilemma. Simplified version of IM-14982 combined with IM-17598 and IM-9773
 When projects attempt to please too many customers, complexity mounts, schedules slip, costs expand ... and no one is happy. From William E. Novak and  Linda Levine CMU SEI Sept 2010 Success in Acquisition: Using Archetypes to Beat the Odds  paper  and see  webpage

When projects attempt to please too many customers, complexity mounts, schedules slip, costs expand ... and no one is happy. From William E. Novak and  Linda Levine CMU SEI Sept 2010 Success in Acquisition: Using Archetypes to Beat the Odds paper and see webpage



11 months ago
Clusters of interacting methods for improving health services network design and delivery. Simplified version of  IM-14982  combined with  IM-17598  and  IM-9773
Clusters of interacting methods for improving health services network design and delivery. Simplified version of IM-14982 combined with IM-17598 and IM-9773
Improvement Science as one of the clusters of interacting methods for improving health services network design and delivery using  complex decision technologies IM-17952
Improvement Science as one of the clusters of interacting methods for improving health services network design and delivery using complex decision technologies IM-17952
This model was built as a deliverable for an Interactive Qualifying Project through Worcester Polytechnic Institute. It simulates the interactions between bee colonies and Varroa mites. 
This model was built as a deliverable for an Interactive Qualifying Project through Worcester Polytechnic Institute. It simulates the interactions between bee colonies and Varroa mites. 
5 months ago
WIP Summary of Klein and Kahneman's American Psychologist 2009  article 
WIP Summary of Klein and Kahneman's American Psychologist 2009 article 
10 months ago
The model is designed to provide a general understanding of the wear and tear on roads or a community's circulation system as a result of vehicle traffic generated by development within and outside of a community. It is not based on realistic assumptions regarding those impacts, it simply attempts t
The model is designed to provide a general understanding of the wear and tear on roads or a community's circulation system as a result of vehicle traffic generated by development within and outside of a community. It is not based on realistic assumptions regarding those impacts, it simply attempts to convey the flow of influence.

The imaginary city has a set area of roads measured in linear yards (width of roads is ignored) and an assumed number of vehicles on those roads set at 30,000 (per day). With those assumptions the wear and tear requiring repair is .02 or 2% Vehicle wear based on the 30,000 per year. There is also a calculated replacement cost of an additional 3% plus through vehicle wear or 5% per year.  An increase in vehicles increases this vehicle wear impact exponentially. The model assumes that there will not be less than 30,000 vehicles.

Expenditures for repair or replacement are set to balance out on an as needed based on 30,000 vehicles. An minimum additional 50 cars from external sources is then assumed. Adding New Homes and/or New Businesses places an even greater burden on the circulation system. 

The model does not consider additional funding. This will be added as a political factor but would need to consider the possibility of decreasing funding for other purposes.

Future additions to the model will include an inflation factor. Unfunded road work will get increasingly more expensive over time. Also a diminished revenue factor. A lack of capacity of the community's roads could likely result in a diminishment of the community's business sector thus reducing sales and property taxes and municipal revenue to expend on the roads. 
This simulation allows you to compare different approaches to influence flow, the Flow Times and the throughput of a work process. The simulation is described in the blog post " Starting late - The Superior Scheduling Approach  - How, despite being identical, one company delivers almost 10 times the
This simulation allows you to compare different approaches to influence flow, the Flow Times and the throughput of a work process. The simulation is described in the blog post "Starting late - The Superior Scheduling Approach - How, despite being identical, one company delivers almost 10 times the value of its competitor using flow-oriented project initiation."

By adjusting the slider below you can observe the work process 
  • without any work in process limitations (WIP Limits), 
  • with process step specific WIP Limits* (work state WIP limits), 
  • with Kanban Token and Replenishment Token based on the Tameflow approach (a form of drum-buffer-rope) 
  • with Drum Buffer Rope** scheduling method. 
* Well know in (agile) Kanban
** Known in the physical world of factory production

The simulation and the comparison between the different scheduling approaches can be seen here -> https://youtu.be/xXvdVkxeMMQ

The "Tameflow approach" using Kanban Token and Replenishment Token as well as the Drum Buffer Rope method take the Constraint (the weakest link of the work process) into consideration when pulling in new work items into the delivery "system". 

Feel free to play around and recognize the different effects of work scheduling methods. 

If you have questions or feedback get in touch via twitter @swilluda

The work flow itself
Look at the simulation as if you would look on a kanban board

The simulation mimics a "typical" feature delivery process on portfolio level. 

From left to right you find the following ten process steps. 
  1. Ideas
  2. Selected ideas (waiting)
  3. Initiate and pitch
  4. Waiting for preparation
  5. Prepare
  6. Waiting for delivery
  7. Deliver
  8. Waiting for closure
  9. Close and communicate
  10. Closed
2f. [thought question] Is it possible for r maxrmax to be positive and yet for the total regional abundance to exhibit a persistent declining trend? Explain your reasoning, using at least one biologically realistic example. You can use the agent-based metapopulation model in InsightMaker to help tes
2f. [thought question] Is it possible for r maxrmax to be positive and yet for the total regional abundance to exhibit a persistent declining trend? Explain your reasoning, using at least one biologically realistic example. You can use the agent-based metapopulation model in InsightMaker to help test your ideas, but this is not required.