Explore Insights New Insights Help
Sign Up for a Free Account Log In

Insight Maker

Insight diagram
Model 2
Profile photo Laura Anne Geronimo
Insight diagram
Brainstorming - Scoping constraints of tradeoff microanalysis
Profile photo Laura Anne Geronimo
Insight diagram
Simple mock-up model of how prioritizing various push-pull factors impacts the size of the immigrant population over time as well as economic benefits to the U.S. economy.
Immigrant Populations and Policy Implications
Profile photo Kelsi Caywood
Insight diagram
My Insight_ENVS8019 report 5 exercise
Profile photo Tilia
Insight diagram
WIP Overview model structures of Khalid Saeed's 2014 WPI paper Jay Forrester’s Disruptive Models of Economic Behavior  See also General SD and Macroeconomics CLDs IM-168865
Clone of Jay Forrester's Disruptive Economic Models
Profile photo Nilo Guimaraes
Insight diagram
An initial study of the economics of single use coffee pods.
Claire - Coffee Pods ISD Humanities v 1.02
Profile photo Claire Smith
Insight diagram
The statement that there can be no economic activity without  energy and that fossil fuels are finite contrasts with the fact that money is not finite and can be created by governments via their central banks at zero marginal cost whenever needed.

An important fact about COAL, GAS and OIL (even when produced via fracking) is that their net energy ratios are falling rapidly. In other words the energy needed to extract a given quantity of fossil fuels is constantly increasing. This ratio (Energy Invested on Energy Returned - EIOER) provides yet another warning that we can no longer rely on fossil fuels to power our economies. We cannot wait until the ratio falls to 1/1 before we invest seriously in alternative sources of energy, because by then industrial society as we know it doday will have ceased to exist. 

PS: A link between growth in energy consumption and GDP growth is clearly illustrated on slide 13 of Gail Tverberg's presentaion entitled ''Oops! The world economy depends on an energy-related bubble''. In fact, the slide shows that growth in energy consumption usually precedes GDP growth.

https://gailtheactuary.files.wordpress.com/2015/10/oops-debt-bubble-10_30_15.pdf

Clone of Energy and Economic Activity
Profile photo chihab houam
Insight diagram
Socio-economic
Profile photo Taylor Gariepy
Insight diagram

Description

 

The model shows Covid-19 situations in Burnie, Tasmania. Under such circumstances, how the state government deals with the pandemic and how economy changes will be illustrated. The relationship between government policy and economic activities under Covid-19 outbreaks will be explained through different variables.


Assumptions

 

Government policy negatively affects Covid-19 outbreaks and economic activities.

Covid-19 outbreaks also has negative effects on economic growth.

 

Parameters

 

There are several fixed and adjusted variables.

 

1.     COVID-19 Outbreaks

Fixed variables: infection rate, recovery rate

Adjusted variables: immunity loss rate

 

2.     Government Policy

Adjusted variables: lockdown, social distancing, testing, vaccination

3.     Economic impact

Fixed variables: tourism

Adjusted variables: economic growth rate

 

Interesting Insights

 

Tourism seems to be the most effective way to bring back economic growth in Tasmania, and it takes time to recover from Covid-19.

 

Government policies tend to have negative influences on economic growth.

BMA708 Assignment 3_Yu Wang_595070
Profile photo Yu Wang
Insight diagram
Economic Model
Profile photo Luke Geise
Insight diagram
Initial Stock & Flow of Energy Infrastructure Development, Climate Change Impacts, and Economic Activity
Profile photo Victoria Yanco
3
Insight diagram

Regulation of resource allocation to production in response to inventory adequacy and delivery delay. A non-price-mediated resource allocation system. From Sterman JD Business Dynamics p172 Fig 5-27

Availability Balancing Loops
Profile photo Geoff McDonnell
Insight diagram
State Goverment Fiscal Policy model
Profile photo Eli Levine
Insight diagram

Nobody seems to notice bubbles until they burst. One possible reason is that those caught up in a bubble are completely blinded by the grip, the overpowering logic and force excerted by the positive feedback loop that drives it. Financial bubbles occur time and time again - and nobody seems to learn. Another example on a different time scale is an argument that spins out of control and ends in violence. The participants seem to be blind to the consequences; the immediate and imperative logic of the feedback loop imposes itself. The vortex created by the feedback loop even seems to draw in outsiders, such as new investors. Is this the reason why we don't notice bubbles? This explanation is meant to stimulate discussion!

Bubbles and Feedback Loops
Profile photo Hanns-Jürgen Hodann
3
Insight diagram
Case 1
Profile photo April Rose Alpha
Insight diagram

Description

Model of Covid-19 outbreak in Burnie, Tasmania

This model was designed from the SIR model(susceptible, infected, recovered) to determine the effect of the covid-19 outbreak on economic outcomes via government policy.

Assumptions

The government policy is triggered when the number of infected is more than ten.

The government policies will take a negative effect on Covid-19 outbreaks and the financial system.

Parameters

We set some fixed and adjusted variables.

Covid-19 outbreak's parameter

Fixed parameters: Infection rate, Background disease, recovery rate.

Adjusted parameter: Immunity loss rate can be changed from vaccination rate.

Government policy's parameters

Adjusted parameters: Testing rate(from 0.15 to 0.95), vaccination rate(from 0.3 to 1), travel ban(from 0 to 0.9), social distancing(from 0.1 to 0.8), Quarantine(from 0.1 to 0.9)

Economic's parameters

Fixed parameter: Tourism

Adjusted parameter: Economic growth rate(from 0.3 to 0.5)

Interesting insight

An increased vaccination rate and testing rate will decrease the number of infected cases and have a little more negative effect on the economic system. However, the financial system still needs a long time to recover in both cases.

Untitled Insight
Profile photo NGUYEN DANG KHOA VO
Insight diagram
This model shows the COVID-19 outbreaks in Burnie and the Government intervention to alleviate the crisis and also how is the intervention affect the economy.

It is assumed that the Government intervention is triggered when the COVID-19 case is equal to or more than 10. 

Government intervention - lock down the state, suppress the development of COVID-19 effectively. It is related to most of people stay at home to reduce the exposure in public area.
On the other hand, it also bring the economy of Burnie in the recession, as no tourists, no dining out activities and decrease in money spending in the city.
Clone of Burnie COVID-19 outbreaks and economic impacts_Pui Chu Daisy Cheung 524767
Profile photo Lin Ling
Insight diagram

The Logistic Map is a polynomial mapping (equivalently, recurrence relation) of degree 2, often cited as an archetypal example of how complex, chaotic behaviour can arise from very simple non-linear dynamical equations. The map was popularized in a seminal 1976 paper by the biologist Robert May, in part as a discrete-time demographic model analogous to the logistic equation first created by Pierre François Verhulst. 

Mathematically, the logistic map is written

where:

 is a number between zero and one, and represents the ratio of existing population to the maximum possible population at year n, and hence x0 represents the initial ratio of population to max. population (at year 0)r is a positive number, and represents a combined rate for reproduction and starvation.
For approximate Continuous Behavior set 'R Base' to a small number like 0.125To generate a bifurcation diagram, set 'r base' to 2 and 'r ramp' to 1
To demonstrate sensitivity to initial conditions, try two runs with 'r base' set to 3 and 'Initial X' of 0.5 and 0.501, then look at first ~20 time steps

The Logistic Map
Profile photo Guy Lakeman
26
Insight diagram
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Lab 13 Base Model
Profile photo Jessica LeDuc
6
Insight diagram

THE 2020 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.
WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

WORLD2020 to PLANET2020
Profile photo Guy Lakeman
15
Insight diagram
This model simulates the economics of buying a home. It was created to compare buying a home against using investment returns to pay for rent.

Try cloning this insight, setting the parameter values for real-world scenarios, and then running sensitivity analysis (see tools) to determine the likely wealth outcomes. Compare buying a home to renting. Note that each run will keep the parameters the same while simulating market volatility.

version 1.8
Home buying simulation 1.8
Profile photo Larry Lee
5
Insight diagram
Socio-economic factors (kaya)
Profile photo Olivia Barber
Insight diagram
Description for Each Simulation Tag:

CRISIS:
- Price increasing dramatically, surpasses average detached home price of 3 million in 3 years if left unaddressed
- Housing Demand by potential buyer population will increase due to unmet financial means (Interest rate and price too high). To secure housing, the outflow is linked to price that is affected by supply and demand.
- Total occupied homes will decrease as empty homes purchased by foreign investors for "house flipping" increase and doubles within 5 years.

DEMAND:
-  Demand for housing in Vancouver will increase, but the amount of people motivated to buy with financial means "buyer population", will decrease in correlation.

SUPPLY:
- Prices do not follow traditional supply and demand concepts. Supply of houses on the market is increasing but, as shown, unable to sell because of unaffordability.

SYSTEMS MODEL LOGISTICS:
- Split into demand and supply with interlinked links
- Supply is a feedback system with sold houses branching off into empty housing or occupied housing
- All flows and stocks are linked with the intention that as market price changes, so will various system dynamics
- Used various functions to simulate a more diverse and accurate system

Sustainability: Economic (prices, housing market), Social (motivation to buy and sell)
Crisis Model - Vancouver Housing Crisis
Profile photo Ray C
Insight diagram
Fig.5 Generic resource allocation structure from Khalil Saeed and Oleg Pavlov's Dynastic Cycles SD model paper  See also  the SD Model Insight
Dynastic Cycles Structure
Profile photo Geoff McDonnell
  • ‹ previous
  • ...
  • 13
  • 14
  • 15
  • 16
  • 17
  • ...
  • next ›
contact@insightmaker.com | Terms of Use | Privacy Policy
Copyright 2026.   Built with ☘️ in Ireland. GitHub logo Open-Source JavaScript Simulation Library