Insight diagram

The Logistic Map is a polynomial mapping (equivalently, recurrence relation) of degree 2, often cited as an archetypal example of how complex, chaotic behaviour can arise from very simple non-linear dynamical equations. The map was popularized in a seminal 1976 paper by the biologist Robert May, in part as a discrete-time demographic model analogous to the logistic equation first created by Pierre François Verhulst

Mathematically, the logistic map is written

where:

 is a number between zero and one, and represents the ratio of existing population to the maximum possible population at year n, and hence x0 represents the initial ratio of population to max. population (at year 0)r is a positive number, and represents a combined rate for reproduction and starvation.
For approximate Continuous Behavior set 'R Base' to a small number like 0.125To generate a bifurcation diagram, set 'r base' to 2 and 'r ramp' to 1
To demonstrate sensitivity to initial conditions, try two runs with 'r base' set to 3 and 'Initial X' of 0.5 and 0.501, then look at first ~20 time steps

The Logistic Map
Insight diagram

This model is based on the article Dynamic modeling of Infectious Diseases, An application to Economic Evaluation of Influenza Vaccination Farmacoeconomics 2008, 26(1): 45-56 .

And EBOLA


Dynamic Modeling of Infectious Diseases
Insight diagram
Economic model
Insight diagram
State Goverment Fiscal Policy model
Insight diagram
ENTICE new_Scale Effect
6 8 months ago
Insight diagram
An initial study of the economics of single use coffee pods.
Real Coffee Pods ISD Humanities v 1.02
Insight diagram
This model is developed to simulate how Burnie can deal with a new outbreak of COVID-19 considering health and economic outcomes. The time limit of the simulation is 100 days when a stable circumstance is reached. 

Stocks
There are four stocks involved in this model. Susceptible represents the number of people that potentially could be infected. Infected refers to the number of people infected at the moment. Recovered means the number of people that has been cured, but it could turn into susceptible given a specific period of time since the immunity does not seem everlasting. Death case refers to the total number of death since the beginning of outbreak. The sum of these four stocks add up to the initial population of the town.

Variables
There are four variables in grey colour that indicate rates or factors of infection, recovery, death or economic outcomes. They usually cannot be accurately identified until it happen, therefore they can be modified by the user to adjust for a better simulation outcome.

Immunity loss rate seems to be less relevant in this case because it is usually unsure and varies for individuals, therefore it is fixed in this model.

The most interesting variable in green represents the government policy, which in this situation should be shifting the financial resources to medical resources to control infection rate, reduce death rate and increase recovery rate. It is limited from 0 to 0.8 since a government cannot shift all of the resources. Bigger scale means more resources are shifted. The change of government policy will be well reflected in the economic outcome, users are encouraged to adjust it to see the change.

The economic outcome is the variable that roughly reflects the daily income of the whole town, which cannot be accurate but it does indicate the trend.

Assumptions:
The recovery of the infected won't happen until 30 days later since it is usually a long process. And the start of death will be delayed for 14 days considering the characteristic of the virus.
Economic outcome will be affected by the number of infected since the infected cannot normally perform financial activities.
Immunity effect is fixed at 30 days after recovery.

Interesting Insights:
 In this model it is not hard to find that extreme government policy does not result in the best economic outcome, but the values in-between around 0.5 seems to reach the best financial outcome while the health issues are not compromised. That is why usually the government need to balance health and economic according to the circumstance. 
 

New outbreak of COVID-19 in Burnie
Insight diagram
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
GEO4315 Final Project Evgeny Bogopolskiy
Insight diagram
Circular equations WIP for Runy.

Added several versions of the model. Added a flow to make C increase. Added a factor to be able to change the value 0.5. 
Circularity in Economic models 1
Insight diagram
Explanation of the Model
This is a Model of COVID-19 outbreak in Burnie, Tasmania which shows the government actions in response to the pandemic COVID-19 and its affects on the Economy. The government health policy changes depending on the reported cases, which is a dependent upon the testing rate. 

Assumptions
Lockdown and travel ban were the main factor in government policy. It negatively impacts on the Economic growth as individuals are not going out which is directly affects the business around the world, in this insight 'Burnie'. This reduces the economic growth and the factors positively effecting economic growth such as Tourism.

Government policies has a negative impact on Exposer of individuals. Moreover, it also has a negative impact on chances of infection when exposed as well as other general infection rate.
 

Interesting Insight 
There is a significant impact of test rating on COVID-19 outbreak. Higher rates increases the government involvement, which decreases cases as well as the total death. 
In contrast, lower testing rates increase the death rate and cases. 

Tourism which plays a avital role in Tasmanian Economy greatly affects the Economic Growth. The decline of Tourism in parts of Tasmania such as Burnie, would directly decrease the economy of Tasmania.


  
BMA 708, Assessment Tast 3: Complex System, Burnie COVID-19 outbreak, Diprina Shakya-519673
Insight diagram
Economic BPA/BPS Model
Insight diagram
Clone of Economics Fast Fashion
12 3 months ago
Insight diagram
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Lab 13_carbon cycle from Gabe
Insight diagram
Decarbonization Stories
Insight diagram

Economic capital growth in a system constrained by a non-renewable resource, Figure 37 from Thinking in Systems by Donella H. Meadows

Economic Capital Growth - Resource Constrained
Insight diagram
JMU
Business and Finance
Insight diagram

From Neil WIlson and Steve Keen's double entry accounting view of the money circuit model

Bank money flows
Insight diagram
This model is comparing healthy and sick residents in Burnie, Tasmania after the Covid-19 Outbreak in 2020. It will also show how the Burnie economy is effected by the disease, how the Government Health Policies are implemented and how they are enforced.

This model is based on the SIR, Susceptible, Infection, Recovery (or Removed) These are the three possible states related to the members of the Burnie population when a contagious decease spreads.

The Government/Government Health Policy, played a big part in the successful decrease in Covid-19 infections. The Government enforced the following.
- No travel (interstate or international)
- Isolation within the residents homes
- Social distancing by 1.5m
- Quarantine
- Non essential companies to be temporarily closed
- Limitations on public gatherings
- And limits on time and kilometers aloud to travel from ones home within a local community

This resulted in lower reported infection rates of Covid-19 and higher recovery rates.

In my opinion:
When the first case was reported the Government could have been even faster to enforce these rules to decrease the fatality rates further for the Burnie, population.  

Assumption: Government policies were only triggered when 10 cases were recorded.
Also, more cases that had been recorded effected the economic growth during this time.

Interesting Findings: In the simulation it shows as the death rates increases towards the end of the week, the rate of testing goes down. You would think that the government would have enforced a higher testing rate over the duration of this time to decrease the number of infections, exposed which would increase the recovery rates faster and more efficiently.  

Figures have been determined by the population of Burnie being 19,380 at the time of assignment.

Complex Systems How Burnie Tasmania dealt with Covid-19 Outbreak BMA708
Insight diagram
This is an evolving attempt to illustrate the interconnected nature of the economic assets of Roswell - Chaves County
RCC economic model 1.1
Insight diagram
Kirk_HW2
just now
Insight diagram

From Oatley 2014 p214++

Balance-of-Payments Adjustment

Even though the current and capital accounts must balance each other, there is no assurancethat the millions of international transactions that individu- als, businesses, and governments conduct every year will necessarily produce this balance. When they don’t, the country faces an imbalance of payments. A country might have a current-accountdeficit that it cannotfully finance throughcapital imports, for example, or it might have a current-accountsur- plus thatis not fully offset by capital outflows. When an imbalancearises, the country must bring its payments back into balance. The process by which a country doessois called balance-of-payments adjustment. Fixed and floating exchange-rate systems adjust imbalances indifferent ways.

In a fixed exchange-rate system, balance-of-payments adjustment occurs through changes in domestic prices. We can most readily understand this ad- justmentprocess through a simple example. Suppose there are only two coun- tries in the world—the United States and Japan—and supposefurther that they maintain a fixed exchange rate according to which $1 equals 100 yen. The United States has purchased 800 billion yen worth of goods, services, and financial assets from Japan, and Japanhas purchased $4 billion of items from the United States. Thus, the United States has a deficit, and Japan a surplus, of $4billion. 

This payments imbalance creates an imbalance between the supply of and the demandfor the dollar and yen in the foreign exchange market. American residents need 800 billion yen to pay for their imports from Japan. They can acquirethis 800 billion yen by selling $8 billion. Japanese residents need only $4 billion to pay for their imports from the United States. They can acquire the $4 billion by selling 400billion yen. Thus, Americanresidentsareselling $4 billion more than Japanese residents want to buy, and the dollar depreci- ates againstthe yen.

Because the exchangerateis fixed, the United States and Japan must prevent this depreciation. Thus, both governmentsintervenein the foreign exchange market, buying dollars in exchange for yen. Intervention has two consequences.First, it eliminates the imbalance in the foreign exchange mar- ket as the governments provide the 400billion yen that American residents need in exchange forthe $4 billion that Japanese residents do not want. With the supply of each currency equalto the demandin the foreign exchange mar- ket, the fixed exchangerate is sustained. Second, intervention changes each country’s money supply. The American moneysupply falls by $4 billion, and Japan’s moneysupplyincreases by 400billion yen. 

The change in the money supplies alters prices in both countries. The reduc- tion of the U.S. money supply causes Americanpricesto fall. The expansion of the money supply in Japan causes Japanese prices to rise. As American prices fall and Japanese prices rise, American goods becomerelatively less expensive than Japanese goods. Consequently, American and Japaneseresidents shift their purchases away from Japanese products and toward American goods. American imports (and hence Japanese exports) fall, and American exports (and hence Japanese imports) rise. As American imports (and Japanese exports) fall and American exports (and Japanese imports) rise, the payments imbalanceis elimi- nated. Adjustment underfixed exchange rates thus occurs through changesin the relative price of American and Japanese goods brought about by the changes in moneysupplies caused by intervention in the foreign exchange market.

In floating exchange-rate systems, balance-of-payments adjustment oc- curs through exchange-rate movements. Let’s go back to our U.S.—Japan sce- nario, keeping everything the same, exceptthis time allowing the currencies to float rather than requiring the governments to maintain a fixed exchangerate. Again,the $4 billion payments imbalance generates an imbalancein the for- eign exchange market: Americansare selling more dollars than Japanese resi- dents want to buy. Consequently, the dollar begins to depreciate against the yen. Because the currencies are floating, however, neither governmentinter- venesin the foreign exchange market. Instead, the dollar depreciates until the marketclears. In essence, as Americans seek the yen they need, they are forced to accept fewer yen for each dollar. Eventually, however, they will acquire all of the yen they need, but will have paid more than $4 billion for them.

The dollar’s depreciation lowers the price in yen of American goods and services in the Japanese market andraises the price in dollars of Japanese goodsandservices in the American market. A 10 percent devaluation of the dollar against the yen, for example, reduces the price that Japanese residents pay for American goods by 10 percentandraises the price that Americans pay for Japanese goods by 10 percent. By making American products cheaper and Japanese goods more expensive, depreciation causes American imports from Japan to fall and American exports to Japan to rise. As American exports expand and importsfall, the payments imbalanceis corrected.

In both systems, therefore, a balance-of-payments adjustment occurs as prices fall in the country with the deficit and rise in the country with the surplus. Consumers in both countries respond to these price changes by purchasing fewer of the now-more-expensive goods in the country with the surplus and more of the now-cheaper goodsin the country with the deficit. These shifts in consumption alter imports and exports in both countries, mov- ing each of their payments back into balance. The mechanism that causes these price changes is different in each system, however. In fixed exchange- rate systems, the exchange rate remains stable and price changes are achieved by changing the moneysupplyin orderto alter prices inside the country. In floating exchange-rate systems, internal prices remain stable, while the change in relative prices is brought about through exchange-rate movements.

Contrasting the balance of payments adjustment process under fixed and floating exchangerates highlights the trade off that governments face between

exchangerate stability and domestic price stability: Governments can have a stable fixed exchangerate or they can stabilize domestic prices, but they cannotachieve both goals simultaneously. If a government wants to maintain a fixed exchangerate, it must accept the occasional deflation and inflation caused by balance-of-payments adjustment. If a governmentis unwilling to accept such price movements,it cannot maintain a fixed exchangerate. This trade-off has been the central factor driving the international monetary system toward floating exchange rates during the last 100 years. We turn now to examine howthis trade-off first led governmentsto create innovativeinter- national monetary arrangements following World WarII and then caused the system to collapse into a floating exchange-rate system in the early 1970s. 

Oatley's balance of payments
Insight diagram
Map of SD work on Samuelson's 1939 model of the business cycle. See also D-memo D-2311-2 Gilbert Low 1976 and IM-165713. An alernative to the Ch 26 Macroeconomics textbook exposition.  From Gil Low's Multiplier Accelerator Model of Business Cycles, Ch 4 of Elements of the System Dynamics Method Book edited by Jorgen Randers 1976 (MIT Press) and 1980 (Productivity Press)
Samuelson multiplier accelerator model
Insight diagram
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
normL