Based on the Market and Price simulation model in System Zoo 3. Used in the System Thinking section of Regenerative Economics.
Based on the Market and Price simulation model in System Zoo 3. Used in the System Thinking section of Regenerative Economics.
This model is an attempt to simulate what is commonly
referred to as the “pesticide treadmill” in agriculture and how it played out
in the cotton industry in Central America after the Second World War until
around the 1990s.  

 The cotton industry expanded dramatically in Central America
after WW2,
This model is an attempt to simulate what is commonly referred to as the “pesticide treadmill” in agriculture and how it played out in the cotton industry in Central America after the Second World War until around the 1990s.

The cotton industry expanded dramatically in Central America after WW2, increasing from 20,000 hectares to 463,000 in the late 1970s. This expansion was accompanied by a huge increase in industrial pesticide application which would eventually become the downfall of the industry.

The primary pest for cotton production, bol weevil, became increasingly resistant to chemical pesticides as they were applied each year. The application of pesticides also caused new pests to appear, such as leafworms, cotton aphids and whitefly, which in turn further fuelled increased application of pesticides.

The treadmill resulted in massive increases in pesticide applications: in the early years they were only applied a few times per season, but this application rose to up to 40 applications per season by the 1970s; accounting for over 50% of the costs of production in some regions.

The skyrocketing costs associated with increasing pesticide use were one of the key factors that led to the dramatic decline of the cotton industry in Central America: decreasing from its peak in the 1970s to less than 100,000 hectares in the 1990s. “In its wake, economic ruin and environmental devastation were left” as once thriving towns became ghost towns, and once fertile soils were wasted, eroded and abandoned (Lappe, 1998).

Sources: Douglas L. Murray (1994), Cultivating Crisis: The Human Cost of Pesticides in Latin America, pp35-41; Francis Moore Lappe et al (1998), World Hunger: 12 Myths, 2nd Edition, pp54-55.

 Wealth can be seen as the factories,
infrastructure, goods and services the population of a nation dispose of. According
to Tim Garrett,  a scientist who looks at
the economy from the perspective of physics, it is existing wealth that generates
economic activity and growth. This growth demands the

Wealth can be seen as the factories, infrastructure, goods and services the population of a nation dispose of. According to Tim Garrett,  a scientist who looks at the economy from the perspective of physics, it is existing wealth that generates economic activity and growth. This growth demands the use of energy as no activity can take place without its use. He also points out that the use of this energy unavoidably  leads to concentrations of CO2 in the atmosphere.  All this, Tim Garrett says,  follows from the second law of thermodynamics.  If wealth decreases then so does economic activity and growth. The CLD tries to illustrate how wealth, ironically, now generates the conditions and feedback loops  that  may cause it to decline. The consequences are  inevitably economic  stagnation (or secular recession?). 

You can read about the connection Tim Garrett makes between 'Wealth, Economic Growth, Energy and CO2  Emissions' simply by Googling 'Tim Garrett and Economy'.

Simple model of the global economy, the global carbon cycle, and planetary energy balance.    The planetary energy balance model is a two-box model, with shallow and deep ocean heat reservoirs. The carbon cycle model is a 4-box model, with the atmosphere, shallow ocean, deep ocean, and terrestrial c
Simple model of the global economy, the global carbon cycle, and planetary energy balance.

The planetary energy balance model is a two-box model, with shallow and deep ocean heat reservoirs. The carbon cycle model is a 4-box model, with the atmosphere, shallow ocean, deep ocean, and terrestrial carbon. 

The economic model is based on the Kaya identity, which decomposes CO2 emissions into population, GDP/capita, energy intensity of GDP, and carbon intensity of energy. It allows for temperature-related climate damages to both GDP and the growth rate of GDP.

This model was originally created by Bob Kopp (Rutgers University) in support of the SESYNC Climate Learning Project.
Simpler view  IM-70351  combined with Economic View IM-69774  in preparation for integrating with Prevention Investment Framework  (private) IM  Reworked at  Multiscale simpler view IM
Simpler view IM-70351 combined with Economic ViewIM-69774 in preparation for integrating with Prevention Investment Framework (private) IM
 
 
 A Tragedy of the Commons situation exists whenever two or more activities, each, which in order to produce results, rely on a shared limited resource. Results for these activities continue to develop as long as their use of the limited resource doesn't exceed the resource limit. Once this limit

A Tragedy of the Commons situation exists whenever two or more activities, each, which in order to produce results, rely on a shared limited resource. Results for these activities continue to develop as long as their use of the limited resource doesn't exceed the resource limit. Once this limit is reached the results produced by each activity are limited to the level at which the resource is replenished. As an example, consider multiple departments with an organization using IT resources, until they've exhausted IT capacity.

Structure of model in Nathan Forrester's 1983 MIT Thesis comprising 4 models
Structure of model in Nathan Forrester's 1983 MIT Thesis comprising 4 models
   Explanation of the Model    This is a Model of COVID-19 outbreak in Burnie, Tasmania which shows the government actions in response to the pandemic COVID-19 and its affects on the Economy. The government health policy changes depending on the reported cases, which is a dependent upon the testing
Explanation of the Model
This is a Model of COVID-19 outbreak in Burnie, Tasmania which shows the government actions in response to the pandemic COVID-19 and its affects on the Economy. The government health policy changes depending on the reported cases, which is a dependent upon the testing rate. 

Assumptions
Lockdown and travel ban were the main factor in government policy. It negatively impacts on the Economic growth as individuals are not going out which is directly affects the business around the world, in this insight 'Burnie'. This reduces the economic growth and the factors positively effecting economic growth such as Tourism.

Government policies has a negative impact on Exposer of individuals. Moreover, it also has a negative impact on chances of infection when exposed as well as other general infection rate.
 

Interesting Insight 
There is a significant impact of test rating on COVID-19 outbreak. Higher rates increases the government involvement, which decreases cases as well as the total death. 
In contrast, lower testing rates increase the death rate and cases. 

Tourism which plays a avital role in Tasmanian Economy greatly affects the Economic Growth. The decline of Tourism in parts of Tasmania such as Burnie, would directly decrease the economy of Tasmania.


  
   Assignment 3 – Complex Systems       Ryan
Salvaggio - 43668070        The Model     This model
conceptualizes the effects on a real-estate market-model utilizing agent based
modelling. This model utilizes basic economic principles of supply and
demand.  The model bases
itself on two Agents - one

Assignment 3 – Complex Systems

 Ryan Salvaggio - 43668070

 

The Model

This model conceptualizes the effects on a real-estate market-model utilizing agent based modelling. This model utilizes basic economic principles of supply and demand.

The model bases itself on two Agents - one being ‘Customers’ of the real estate market model, whilst the other being the Real estate itself, coined 'Houses'.

Consumers (Demand)

The Agent population, ‘Consumers’ specifies the total amount of people whom can potentially become buyers within the market. This is limited to 30 for conceptual purposes. The Agent ‘Consumer’ exists in two states, either being an ‘Active Customer’ (Active) or an ‘Inactive Customer’ (Inactive).  The transition from Inactive to Active occurs upon the basis that the ‘Budget’ of the Consumer meets the desired price of the marketplace, this is specified through the variable ‘Budget’ defining the probability that this transition will occur – this is adjustable by the user indicating a highly resistive or by accepting the market. ‘Budget’s probability in a real life scenario would be based upon numerous factors however conceptually utilizing the slider can present many of these various situations.

Upon transitioning into an active state an ‘Active consumer’ will attempt to find the closest ‘For sale household’, this is represented and carried out through the ‘Enter’ action.  Upon finding a household the consumer and house will both return to their respected inactive state thus repeating the process.

Demand – ‘Count of active customers – demand’ is then calculated by a count of Consumers transitioned and currently in the Active state. A high demand would be indicative through a high ‘Budget’ responsiveness whilst a low demand would be indicative of a low ‘Budget’ responsiveness. The increase in Price and hence supply of household thus reduces demand and vise versa.  

House (Supply)

The Agent population, ‘Houses’ specifies the total amount of households that can potentially become for sale within the market. This is limited to 112 for conceptual purposes. The Agent ‘House’ exists in two states, either being ‘For Sale’ (Active) or ‘Not for Sale’ (Inactive).  The transition from Inactive to Active occurs upon the basis that the ‘Motivation to Sell’ of the House is satisfied, this satisfaction is specified by a set probability that this transition will occur – this is adjustable by the user indicating a highly responsive or restricted house market. ‘Motivation to sell’ probability in a real life scenario would be based upon numerous factors however conceptually utilizing the slider can present many of these various situations.

Upon transitioning into an active state a ‘For Sale’ house will wait for an ‘Active Customer’ ‘this is represented and carried out through the ‘Search’ action. Upon completion of the action both states become inactive and the process continues.

Supply – ‘Count of houses for sale –supply’ is then calculated by a count of Houses ‘For Sale’ that are currently in the active state. Ultimately a high Motivation to sell would sharply increase supply, whilst a low motivation would have the adverse effects.  

Movement Speed

Movement speed – describes the base movement rate of Consumers. This variable describes the transition into the ‘Inactive’ state of a consumer, ultimately when a household is found and purchased. Movement speed affects both demand and supply in the sense that the transitioning of stages is quickened and more responsive. (Indicated by a more rigid demand and supply curve).

Market Price

In economics Price is a linear function (straight line) of the proportion of houses for sale (positive slope), and also a linear function of the proportion of buyers (negative slope).Therefore , the variable ‘Market Price’ is calculated by 10 * the portion of ‘House’ in the active state (which is the supply) over the portion of ‘Consumers’ in the active state (which is the demand) Ultimately this presents the economic principles  that as Supply is directly related to Price and demand is inversely related to Price.

Note

Each simulation (with the same settings) will present a different and unique simulation. I have set a Random Boolean to the active component that randomizes the amount of Customers or houses that begin in their active state. The probability is only 0.008 but is useful in describing the effects on the market from various position’s and seeing unique models.  

References

https://www.youtube.com/watch?v=ynuoZQbqeUg - Your First ABM/Part II

https://insightmaker.com/insight/35714/Foraging-Model

 The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors. THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST W

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

Simple model of the global economy, the global carbon cycle, and planetary energy balance.    The planetary energy balance model is a two-box model, with shallow and deep ocean heat reservoirs. The carbon cycle model is a 4-box model, with the atmosphere, shallow ocean, deep ocean, and terrestrial c
Simple model of the global economy, the global carbon cycle, and planetary energy balance.

The planetary energy balance model is a two-box model, with shallow and deep ocean heat reservoirs. The carbon cycle model is a 4-box model, with the atmosphere, shallow ocean, deep ocean, and terrestrial carbon. 

The economic model is based on the Kaya identity, which decomposes CO2 emissions into population, GDP/capita, energy intensity of GDP, and carbon intensity of energy. It allows for temperature-related climate damages to both GDP and the growth rate of GDP.

This model was originally created by Bob Kopp - https://insightmaker.com/user/16029 (Rutgers University) in support of the SESYNC Climate Learning Project.

Steve Conrad (Simon Fraser University) modified the model to include emission/development/and carbon targets for the use by ENV 221.
 Modern industrial civilisation has created massive
interdependencies which define it and without which it could not function. We all
depend on industrial farming to produce the food we eat, we depend on gasoline
being available at the gas station,  on the
availability of electricity and even on the

Modern industrial civilisation has created massive interdependencies which define it and without which it could not function. We all depend on industrial farming to produce the food we eat, we depend on gasoline being available at the gas station,  on the availability of electricity and even on the bread supplied by the local baker. Naturally, we tend to support the institutions that supply the amenities and goods to which we have become accustomed: if we get our food from the local supermarket, it is likely that we would be opposed to it’s closure. This means that the economic system that relies on continuous growth enjoys implicit societal support and that nothing short of environmental disaster or a shortage of essential raw materials will impede it’s growing indefinitely. It is not hard to work out the consequences of this situation!

This model simulates the economics of buying a home. It was created to compare buying a home against using investment returns to pay for rent. According to Micheal Finke, house prices typically run 20x monthly rental rates.      Try cloning this insight, setting the parameter values for real-world s
This model simulates the economics of buying a home. It was created to compare buying a home against using investment returns to pay for rent. According to Micheal Finke, house prices typically run 20x monthly rental rates. 

Try cloning this insight, setting the parameter values for real-world scenarios, and then running sensitivity analysis (see tools) to determine the likely wealth outcomes. Compare buying a home to renting. Note that each run will keep the parameters the same while simulating market volatility.

version 1.9
4 last month
Solow model without external factors.
Solow model without external factors.
4 9 months ago
This model shows the operation of a simple economy. It demonstrates the effect of changes in the fractional rate of consumption (or the converse the fractional rate of saving.)  In summary, lower rates of consumption (based on production) result in higher rates of production and consumption in the l
This model shows the operation of a simple economy. It demonstrates the effect of changes in the fractional rate of consumption (or the converse the fractional rate of saving.)

In summary, lower rates of consumption (based on production) result in higher rates of production and consumption in the long-run.