Collapse of the economy, not just recession, is now very likely. To give just one possible cause,
in the U.S. the fracking industry is in deep trouble. It is not only that most
fracking companies have never achieved a   free cash flow   (made a profit)
since the fracking boom started in 2008, but th
Collapse of the economy, not just recession, is now very likely. To give just one possible cause, in the U.S. the fracking industry is in deep trouble. It is not only that most fracking companies have never achieved a free cash flow (made a profit) since the fracking boom started in 2008, but that  an already very weak  and unprofitable oil industry cannot cope with extremely low oil prices. The result will be the imminent collapse of the industry. However, when the fracking industry collapses in the US, so will the American economy – and by extension, probably, the rest of the world economy. To grasp a second and far more serious threat it is vital to understand the phenomenon of ‘Global Dimming’. Industrial activity not only produces greenhouse gases, but emits also sulphur dioxide which converts to reflective sulphate aerosols in the atmosphere. Sulphate aerosols act like little mirrors that reflect sunlight back into space, cooling the atmosphere. But when economic activity stops, these aerosols (unlike carbon dioxide) drop out of the atmosphere, adding perhaps as much as 1° C to global average temperatures. This can happen in a very short period time, and when it does mankind will be bereft of any means to mitigate the furious onslaught of an out-of-control and merciless climate. The data and the unrelenting dynamic of the viral pandemic paint bleak picture.  As events unfold in the next few months,  we may discover that it is too late to act,  that our reign on this planet has, indeed,  come to an abrupt end?  
A simple ABM example illustrating how the SEIR model works. It can be a basis for experimenting with learning the impact of human behavior on the spread of a virus, e.g. COVID-19.
A simple ABM example illustrating how the SEIR model works. It can be a basis for experimenting with learning the impact of human behavior on the spread of a virus, e.g. COVID-19.
The System Dynamics Model presents the the COVID-19 status in Puerto Princesa City
The System Dynamics Model presents the the COVID-19 status in Puerto Princesa City
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.
 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
 ==edited by Prasiantoro Tusono and Rio Swarawan Putra==     Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with a
==edited by Prasiantoro Tusono and Rio Swarawan Putra==

Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
 Introduction; 
 This model shows COVID-19 outbreak in Burnie have some impact for local economy situation and government policy. The main government policy is lockdown during the spreading period which can help reduce the infected rate, and also increase the test scale to help susceptible confirm t

Introduction;

This model shows COVID-19 outbreak in Burnie have some impact for local economy situation and government policy. The main government policy is lockdown during the spreading period which can help reduce the infected rate, and also increase the test scale to help susceptible confirm their situation.


Variables;

Infection rate, Death rate, Recovery rate, test rate, susceptible, immunity rate, economy growth rate

These variables are influenced by different situation.


When cases over 10, government will implement lockdown policy.


Conclusion;

When cases increase too much , they will influence the economic situation.


Interesting insights:

If the recover rate is higher, more people will recover from the disease. It seems to be a positive sign. However, it would lead to a higher number of recovered people and more susceptible. As a result, there would be more cases, and would have a negative impact on the economic growth. 

 An SIR model for Covid-19      This is a simple example of an SIR model for my Mathematics for Liberal Arts classes at Northern Kentucky University, Spring of 2022.     Let's think about things on the scale of a week. What happens over a week?       With an Ro of 2 (2 people infected for each infec
An SIR model for Covid-19

This is a simple example of an SIR model for my Mathematics for Liberal Arts classes at Northern Kentucky University, Spring of 2022.

Let's think about things on the scale of a week. What happens over a week?

With an Ro of 2 (2 people infected for each infected individual, over the course of a week); recovery rate of 1 (every infected person loses their infectiousness after a week), and resusceptible rate of .05 (meaning .05, or a twentieth of the recovered lose their immunity each week), the disease peaks -- does the wave, then waves again before the year is out, then ultimately becomes
"endemic" (that is, it's never going away, which is clear after two years -- that is, a time of 104 weeks). This is like our seasonal flu (only the disease in this simulation doesn't illustrate seasonality -- that requires a more complicated model).

With an Ro of .9, recovery rate of 1, and resusceptible rate of .05, the disease is eliminated.

Masking, social distancing (including quarantining following contact), and quarantines all serve to reduce infectivity. And if we can drive infectivity down far enough, the disease can be eliminated. Other things that help is slowing down the resusceptibility, by vaccinating. Vaccines (in general) impart an immune response that reduces -- or even eliminates -- your susceptibility. We are still learning the extent to which these vaccines impart long-term immunity.

Other tools at our disposal include Covid-19 treatments, which increase the recovery rate, and vaccinations, which reduce the resusceptible rate. These can also serve to help us eradicate a disease, so that it doesn't become endemic (and so plague us forever).

Andy Long
Mathematics and Statistics

Some resources:
  1. Wear a good mask: https://www.cdc.gov/coronavirus/2019-ncov/your-health/effective-masks.html
  2. Gotta catch those sneezes: https://www.dailymail.co.uk/sciencetech/article-8221773/Video-shows-26-foot-trajectory-coronavirus-infected-sneeze.html

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A simple ABM example illustrating how the SEIR model works. It can be a basis for experimenting with learning the impact of human behavior on the spread of a virus, e.g. COVID-19.
A simple ABM example illustrating how the SEIR model works. It can be a basis for experimenting with learning the impact of human behavior on the spread of a virus, e.g. COVID-19.
A simple ABM example illustrating how the SEIR model works. It can be a basis for experimenting with learning the impact of human behavior on the spread of a virus, e.g. COVID-19.
A simple ABM example illustrating how the SEIR model works. It can be a basis for experimenting with learning the impact of human behavior on the spread of a virus, e.g. COVID-19.
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.
 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
   Evolution of Covid-19 in Brazil:  
  A System Dynamics Approach  
 Villela, Paulo (2020) villela.paulo@gmail.com  This model is based on  Crokidakis, Nuno . (2020).  Data analysis and modeling of the evolution of COVID-19 in Brazil . For more details see full paper  here .
Evolution of Covid-19 in Brazil:
A System Dynamics Approach

Villela, Paulo (2020)
villela.paulo@gmail.com

This model is based on Crokidakis, Nuno. (2020). Data analysis and modeling of the evolution of COVID-19 in Brazil. For more details see full paper here.

3 6 months ago
 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
Check how different times of recovery and deths in cases of covid-19 infulence 2 key mortality indicators: Overall mortalityr ate (ratio of all deaths to all cases)  Resolved cases mortality rate (ratio of all deaths to recovered cases)     Assumed delays are:  5 weeks for recovery cases  2 weeks fo
Check how different times of recovery and deths in cases of covid-19 infulence 2 key mortality indicators:
Overall mortalityr ate (ratio of all deaths to all cases)
Resolved cases mortality rate (ratio of all deaths to recovered cases)

Assumed delays are:
5 weeks for recovery cases
2 weeks for death cases
Delays are built into conveyor stocks, so cannot be adjusted by slider

keep in mind Insigth uses similar but made-up numbers and linear flow of new cases (in opposition to exponential in real world)  
 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)        Germany
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 65 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly)
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating)
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again)

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
This basic pandemic model explores the dynamics and healthcare burden associated with of a novel infection.
This basic pandemic model explores the dynamics and healthcare burden associated with of a novel infection.
 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources: