This model can be used to investigate how government interventions affect transmission and mortality associated with COVID-19 during an outbreak, and how these interventions impact on the economic activities in Burnie, Tasmania.     Assumptions can be made that effective government intervention can
This model can be used to investigate how government interventions affect transmission and mortality associated with COVID-19 during an outbreak, and how these interventions impact on the economic activities in Burnie, Tasmania.

Assumptions can be made that effective government intervention can reduce the number of people infected, whereas the local economy is severely impacted.

Insights:
1. When COVID-19 case are more than 10, government policy will be triggered.

2. Testing rate is very crucial to understanding the spread of the pandemic and responding appropriately.


10 months ago
 This System Model presents the cases of COVID-19 in Puerto Princesa City as of June 3, 2021     Insight Author: Pia Mae M. Palay
This System Model presents the cases of COVID-19 in Puerto Princesa City as of June 3, 2021

Insight Author: Pia Mae M. Palay
 Aquí tenemos un modelo SEIR básico e investigaremos qué cambios serían apropiados para modelar el Coronavirus 2019

Aquí tenemos un modelo SEIR básico e investigaremos qué cambios serían apropiados para modelar el Coronavirus 2019

     El Salvador     Tamaño población inicial: 6,400,000  Unidad de cuidados intensivos disponibles: 2000  Casos confirmados hasta 13/10/2020: 30,480  Casos fallecidos hasta 13/10/2020: 899   Fuente: https://covid19.gob.sv/

El Salvador
  • Tamaño población inicial: 6,400,000
  • Unidad de cuidados intensivos disponibles: 2000
  • Casos confirmados hasta 13/10/2020: 30,480
  • Casos fallecidos hasta 13/10/2020: 899
Fuente: https://covid19.gob.sv/


 Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

 Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

 This is the third in a series of models that explore the dynamics of infectious diseases. This model looks at the impact of two types of suppression policies.      Press the simulate button to run the model with no policy.  Then explore what happens when you set up a lockdown and quarantining polic
This is the third in a series of models that explore the dynamics of infectious diseases. This model looks at the impact of two types of suppression policies. 

Press the simulate button to run the model with no policy.  Then explore what happens when you set up a lockdown and quarantining policy by changing the settings below.  First explore changing the start date with a policy duration of 60 days.
 This is the second in a series of models that explore the dynamics of and policy impacts on infectious diseases. This basic SIR model explores the impact of a simple test and isolate policy. The first model can be found  here .
This is the second in a series of models that explore the dynamics of and policy impacts on infectious diseases. This basic SIR model explores the impact of a simple test and isolate policy. The first model can be found here.

This stock-flow simulation model is to show Covid-19 virus spread rate, sources of spreading and safety measures followed by all the countries affected around the world. The simulation also aims at predicting for how much more period of time the virus will persist, how many people could recover at w
This stock-flow simulation model is to show Covid-19 virus spread rate, sources of spreading and safety measures followed by all the countries affected around the world.
The simulation also aims at predicting for how much more period of time the virus will persist, how many people could recover at what kind of rate and also about the virus toughness dependence based on its excessive speed, giving rise to bigger numbers day-by-day.
 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)        Germany
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 65 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly)
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating)
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again)

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
The model is built to demonstrates how Burnie Tasmania can deal with a new COVID-19 outbreaks, taking government policies and economic effects into account. The susceptible people are the local Burnie residents. If residents were infected, they would either recovered or dead. However, even they do r
The model is built to demonstrates how Burnie Tasmania can deal with a new COVID-19 outbreaks, taking government policies and economic effects into account.
The susceptible people are the local Burnie residents. If residents were infected, they would either recovered or dead. However, even they do recover, there is a chance that they will get infected again if immunity loss occurs.
From the simulation result we can see that with the implementation of local government policies including travel ban and social distancing,  the number of infected people will decrease. The number of recovered people will increase in the first 5 weeks but then experience a decrease.
In addition, with the implementation of local government policy, the economic environment in Burnie will be relatively stable when the number of COVID-19 cases is stable.
10 months ago
This Model described the outbreak simulation under government policy and impacts on Economics.     Assumptions    The social distance policy can reduce 80% of infection.        Interesting Insights   The story tell the difference when social distance applied or not        Click on View story to star
This Model described the outbreak simulation under government policy and impacts on Economics.

Assumptions 
The social distance policy can reduce 80% of infection.

Interesting Insights
The story tell the difference when social distance applied or not

Click on View story to start simulations

 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
 Introduction:  This model aims to show that how the Tasmania government's COVID-19 policy can address the spread of the pandemic and in what way these policies can damage the economy.        Assumption:    Variables such as infection rate, death rate and the recovery rate are influenced by the actu
Introduction:
This model aims to show that how the Tasmania government's COVID-19 policy can address the spread of the pandemic and in what way these policies can damage the economy.

Assumption:
Variables such as infection rate, death rate and the recovery rate are influenced by the actual situation.
The government will implement stricter travel bans and social distant policies as there are more cases.
Government policies reduce infection and limit economic growth at the same time.
A greater number of COVID-19 cases has a negative effect on the economy.

Interesting insights:
A higher testing rate will make the infection increase and the infection rate will slightly increase as well. 
Government policies are effective to lower the infection, however, they will damage the local economy. While the higher number of COVID-19 cases also influences economic activities.
10 months ago
 Modelo epidemiológico simples   SIR: Susceptíveis - Infectados - Recuperados         Clique aqui  para ver um vídeo com a apresentação sobre a construção e uso deste modelo.  É recomendável ver o vídeo num computador de mesa para se poder ver os detalhes do modelo.          Dados iniciais de  infec
Modelo epidemiológico simples
SIR: Susceptíveis - Infectados - Recuperados

Clique aqui para ver um vídeo com a apresentação sobre a construção e uso deste modelo.  É recomendável ver o vídeo num computador de mesa para se poder ver os detalhes do modelo.


Dados iniciais de infectados, recuperados e óbitos para diversos países (incluindo o Brasil) podem ser obtidos aqui neste site.
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

9 months ago
[The Model of COVID-19 Pandemic Outbreak in Burnie, TAS]   A model of COVID-19 outbreaks and responses from the government with the impact on the local economy and medical supply.      It is assumed that the government policy is triggered and rely on reported COVID-19 cases when the confirmed cases
[The Model of COVID-19 Pandemic Outbreak in Burnie, TAS]

A model of COVID-19 outbreaks and responses from the government with the impact on the local economy and medical supply. 

It is assumed that the government policy is triggered and rely on reported COVID-19 cases when the confirmed cases are 10 or less. 

Interesting insights
The infection rate will decline if the government increase the testing ranges, meanwhile,  the more confirmed cases will increase the pressure on hospital capacity and generate more demand for medical resources, which will promote government policy intervention to narrow the demand gap and  affect economic performance by increasing hospital construction with financial investment.

10 months ago
   Model description:   This model is designed to simulate the outbreak of Covid-19 in Burnie in Tasmania, death cases, the governmental responses and Burnie local economy.     More importantly, the impact of governmental responses to both Covid-19 infection and to local economy, the impact of death
Model description:
This model is designed to simulate the outbreak of Covid-19 in Burnie in Tasmania, death cases, the governmental responses and Burnie local economy. 

More importantly, the impact of governmental responses to both Covid-19 infection and to local economy, the impact of death cases to local economy are illustrated. 

The model is based on SIR (Susceptible, Infected and recovered) model. 

Variables:
The simulation takes into account the following variables: 

Variables related to Covid-19: (1): Infection rate. (2): Recovery rate. (3): Death rate. (4): Immunity loss rate. 

Variables related to Governmental policies: (1): Vaccination mandate. (2): Travel restriction to Burnie. (3): Economic support. (4): Gathering restriction.

Variables related to economic growth: Economic growth rate. 

Adjustable variables are listed in the part below, together with the adjusting range.

Assumptions:
(1): Governmental policies are aimed to control(reduce) Covid-19 infections and affect (both reduce and increase) economic growth accordingly.

(2) Governmental policy will only be applied when reported cases are 10 or more. 

(3) The increasing cases will negatively influence Burnie economic growth.

Enlightening insights:
(1) Vaccination mandate, when changing from 80% to 100%, doesn't seem to affect the number of death cases.

(2) Governmental policies are effectively control the growing death cases and limit it to 195. 

10 months ago
  COVID-19 outbreak in Burnie Tasmania Simulation Model         Introduction        This model simulates how COVID-19 outbreak in Burnie and how the government responses influence the economic community.  Government responses are based on the reported COVID-19 cases amount, whcih is considered to be
COVID-19 outbreak in Burnie Tasmania Simulation Model

Introduction

This model simulates how COVID-19 outbreak in Burnie and how the government responses influence the economic community.  Government responses are based on the reported COVID-19 cases amount, whcih is considered to be based on testing rate times number of people who are infected minus those recovered from COVID-19 and dead.
Government interventions include the implement of healthy policy, border surveillance, quarantine and travel restriction. After outbreak, economic activities are positively affected by the ecommerce channel development and normal economic grwoth, while the unemployement rate unfortunately increases as well. 

Assumption
  • Enforcing government policies reduce both infection and economica growth.                                                                                                         
  • When there are 10 or greater COVID-19 cases reported, the governmwnt policies are triggered.                                                          
  • Greater COVID-19 cases have negatively influenced the economic activities.                                                                                             
  • Government policies restict people's activities socially and economically, leading to negative effects on economy.                                          
  • Opportunities for jobs are cut down too, making umemployment rate increased.                                                                                   
  • During the outbreak period, ecommerce has increased accordingly because people are restricted from going out.                                  
Interesting insights

An increase in vaccination rate will make difference on reduing the infection. People who get vaccinated are seen to have higher immunity index to fight with COVID-19. Further research is needed.

Testing rate is considered as critical issue to reflect the necessity of government intervention. Higher testing rate seems to boost immediate intervention. Reinforced policies can then reduce the spread of coronvirus but absoluately have negative impacts on economy too.
10 months ago
 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
 An SIR model for Covid-19      This is a simple example of an SIR model for my Mathematics for Liberal Arts classes at Northern Kentucky University, Spring of 2022.     Let's think about things on the scale of a week. What happens over a week?       With an Ro of 2 (2 people infected for each infec
An SIR model for Covid-19

This is a simple example of an SIR model for my Mathematics for Liberal Arts classes at Northern Kentucky University, Spring of 2022.

Let's think about things on the scale of a week. What happens over a week?

With an Ro of 2 (2 people infected for each infected individual, over the course of a week); recovery rate of 1 (every infected person loses their infectiousness after a week), and resusceptible rate of .05 (meaning .05, or a twentieth of the recovered lose their immunity each week), the disease peaks -- does the wave, then waves again before the year is out, then ultimately becomes
"endemic" (that is, it's never going away, which is clear after two years -- that is, a time of 104 weeks). This is like our seasonal flu (only the disease in this simulation doesn't illustrate seasonality -- that requires a more complicated model).

With an Ro of .9, recovery rate of 1, and resusceptible rate of .05, the disease is eliminated.

Masking, social distancing (including quarantining following contact), and quarantines all serve to reduce infectivity. And if we can drive infectivity down far enough, the disease can be eliminated. Other things that help is slowing down the resusceptibility, by vaccinating. Vaccines (in general) impart an immune response that reduces -- or even eliminates -- your susceptibility. We are still learning the extent to which these vaccines impart long-term immunity.

Other tools at our disposal include Covid-19 treatments, which increase the recovery rate, and vaccinations, which reduce the resusceptible rate. These can also serve to help us eradicate a disease, so that it doesn't become endemic (and so plague us forever).

Andy Long
Mathematics and Statistics

Some resources:
  1. Wear a good mask: https://www.cdc.gov/coronavirus/2019-ncov/your-health/effective-masks.html
  2. Gotta catch those sneezes: https://www.dailymail.co.uk/sciencetech/article-8221773/Video-shows-26-foot-trajectory-coronavirus-infected-sneeze.html

7 months ago
Check how different times of recovery and deths in cases of covid-19 infulence 2 key mortality indicators: Overall mortalityr ate (ratio of all deaths to all cases)  Resolved cases mortality rate (ratio of all deaths to recovered cases)     Assumed delays are:  5 weeks for recovery cases  2 weeks fo
Check how different times of recovery and deths in cases of covid-19 infulence 2 key mortality indicators:
Overall mortalityr ate (ratio of all deaths to all cases)
Resolved cases mortality rate (ratio of all deaths to recovered cases)

Assumed delays are:
5 weeks for recovery cases
2 weeks for death cases
Delays are built into conveyor stocks, so cannot be adjusted by slider

keep in mind Insigth uses similar but made-up numbers and linear flow of new cases (in opposition to exponential in real world)  
 Wenn kein Versuch unternommen wird, SARS-CoV-2 auszurotten, wird es
schließlich endemisch und unausrottbar werden, mit hohen, nicht endenden Kosten
für die Welt in Bezug auf Wirtschaftswachstum, menschliche Gesundheit und
Menschenleben. Die derzeitige Strategie der meisten Regierungen besteht darin

Wenn kein Versuch unternommen wird, SARS-CoV-2 auszurotten, wird es schließlich endemisch und unausrottbar werden, mit hohen, nicht endenden Kosten für die Welt in Bezug auf Wirtschaftswachstum, menschliche Gesundheit und Menschenleben. Die derzeitige Strategie der meisten Regierungen besteht darin, restriktive Maßnahmen zu ergreifen, wenn das Virus die Krankenhäuser zu überschwemmen droht und diese Beschränkungen wieder zu lockern, wenn diese Gefahr zurückgeht. Diese Strategie kann die hochinfektiöse Delta-Variante, die einen geschätzten R0-Wert von 6 bis 9 hat, nicht eliminieren. Regelmäßige Sperrungen werden sich in Zukunft kaum vermeiden lassen.

Eine Ausrottung ist jedoch möglich, ebenso wie eine weltweit schnell erreichte Herdenimmunität, die den R0-Wert dauerhaft auf unter 1 senkt und somit zum Verschwinden des Virus führen wird. Entscheidend dafür ist Ivermectin, ein Medikament, das billig und leicht verfügbar ist und in den meisten Ländern hergestellt werden kann. Eine kürzlich durchgeführte Metastudie hat gezeigt, dass die prophylaktische Anwendung von Ivermectin eine Infektion mit dem Virus im Durchschnitt um 86 % verhindern kann, was der Wirksamkeit von Impfstoffen sehr ähnlich ist. Die, die nicht geimpft wurden und nicht immun sind, weil sie Covid-19 überstanden haben, könnten sich mit Ivermectin sehr effektiv vor einer Infektion schützen.  Die Ausrottung erfordert den Einsatz aller in der Grafik gezeigten Instrumente: künftige Generationen könnte es erspart bleiben mit dieser Plage leben zu müssen.