This stock and flow diagram is a working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This stock and flow diagram is a working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:  dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)  Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-se
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:

dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)

Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-sectional area (m2); Q: river flow (m3 s-1); x: length of box (m); E: dispersion coefficient (m2 s-1).

For a given length delta x, Adx = V, the box volume. For a set value of Q, the equation becomes:

VdS/dt = QdS - (d(EA)/dx) dS (Eq. 2)

EA/x, i.e. (m2 X m2) / (m s) = E(b), the bulk dispersion coefficient, units in m3 s-1, i.e. a flow, equivalent to Q

At steady state, dS/dt = 0, therefore we can rewrite Eq. 2 for one estuarine box as:

Q(Sr-Se)=E(b)r,e(Sr-Se)-E(b)e,s(Se-Ss) (Eq. 3)

Where Sr: river salinity (=0), Se: mean estuary salinity; Ss: mean ocean salinity

E(b)r,e: dispersion coefficient between river and estuary, and E(b)e,s: dispersion coefficient between the estuary and ocean.

By definition the value of E(b)r,e is zero, otherwise we are not at the head (upstream limit of salt intrusion) of the estuary. Likewise Sr is zero, otherwise we're not in the river. Therefore:

QSe=E(b)e,s(Se-Ss) (Eq. 4)

At steady state

E(b)e,s = QSe/(Se-Ss) (Eq 5)

The longitudinal dispersion simulates the turbulent mixiing of water in the estuary during flood and ebb, which supplies salt water to the estuary on the flood tide, and make the sea a little more brackish on the ebb.

You can use the slider to turn off dispersion (set to zero), and see that if the tidal wave did not mix with the estuary water due to turbulence, the estuary would quickly become a freshwater system.
My AP Environmental Homework for the Cats Over Borneo Assignment
My AP Environmental Homework for the Cats Over Borneo Assignment
This model describes the N isotope dynamics in a marine system where the shallowness of the chemocline prevents significant nitrification near the base of the photic zone.
This model describes the N isotope dynamics in a marine system where the shallowness of the chemocline prevents significant nitrification near the base of the photic zone.
In Chile,  60% of its population are exposed to levels of Particulate Matter (PM) above international standards . Air Pollution is causing  4,000 premature deaths per year , including health costs over US$8 billion.    The System Dynamics Causal Loop Diagram developed herein shows an initial study o
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.  The converter in this file contains precipitation for Phoenix only.
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Phoenix only.
Just recently, there was a huge problem that ended about C8, a deadly chemical, that was poured into lakes and rivers by DuPont, a company that sold nylon. This chemical caused a huge consensus, many birth defects, and cows with green insides spraying blood from many places.
Just recently, there was a huge problem that ended about C8, a deadly chemical, that was poured into lakes and rivers by DuPont, a company that sold nylon. This chemical caused a huge consensus, many birth defects, and cows with green insides spraying blood from many places.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

This model explains the primary production of phytoplankton, forced by light and nutrients over a year period.
This model explains the primary production of phytoplankton, forced by light and nutrients over a year period.


This diagram provides a stylised description of important feedbacks within a shallow-lake system.
This diagram provides a stylised description of important feedbacks within a shallow-lake system.

Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
In Chile,  60% of its population are exposed to levels of Particulate Matter (PM) above international standards . Air Pollution is causing  4,000 premature deaths per year , including health costs over US$8 billion.    The System Dynamics Causal Loop Diagram developed herein shows an initial study o
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
With Our-Green-Spine we have discovered new insights how trees / forest / green structures are part of the managing system of controlling the temperature of our Earth via their cooling capacity by using water and influencing the water cycle. We want to translate our insights in a climate model. Peop
With Our-Green-Spine we have discovered new insights how trees / forest / green structures are part of the managing system of controlling the temperature of our Earth via their cooling capacity by using water and influencing the water cycle. We want to translate our insights in a climate model. People who to join us please send an email to marcel.planb@gmail.com.
Thanks, Marcel de Berg
Modeling the change in concentration of O2 in a lake with a continuous loading of BOD, modeled as a CSTR
Modeling the change in concentration of O2 in a lake with a continuous loading of BOD, modeled as a CSTR
This model illustrates the key processes that influence the water level within Lake Okeechobee.        References:     Southwest Florida Water Management District. (2020). Lake Okeechobee. Retrieved from https://apps.sfwmd.gov/sitestatus/     United States Geological Survey. (2020). USGS Water-Year
This model illustrates the key processes that influence the water level within Lake Okeechobee.


References:

Southwest Florida Water Management District. (2020). Lake Okeechobee. Retrieved from https://apps.sfwmd.gov/sitestatus/

United States Geological Survey. (2020). USGS Water-Year Summary for Site USGS 02276400. Retrieved from https://nwis.waterdata.usgs.gov/nwis/wys_rpt?dv_ts_ids=210619&wys_water_yr=2019&site_no=02276400&agency_cd=USGS&adr_water_years=2006%2C2007%2C2008%2C2009%2C2010%2C2011%2C2012%2C2013%2C2014%2C2015%2C2016%2C2017%2C2018%2C2019&referred_module=

Winchester, J. (2020, October 10). Water releases from Lake Okeechobee to begin next week. Retrieved from https://www.winknews.com/2020/10/09/water-releases-from-lake-okeechobee-to-begin-next-week/


Created By:

Roger Al-Bahou
Carlos Alvarez
Christina Burgess
Devin Hanley
Daniel Harper
 Interplay between wolves eating sheep and farmers killing wolves who kill deer that eat crops that feed sheep.

Interplay between wolves eating sheep and farmers killing wolves who kill deer that eat crops that feed sheep.

This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:  dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)  Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-se
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:

dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)

Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-sectional area (m2); Q: river flow (m3 s-1); x: length of box (m); E: dispersion coefficient (m2 s-1).

For a given length delta x, Adx = V, the box volume. For a set value of Q, the equation becomes:

VdS/dt = QdS - (d(EA)/dx) dS (Eq. 2)

EA/x, i.e. (m2 X m2) / (m s) = E(b), the bulk dispersion coefficient, units in m3 s-1, i.e. a flow, equivalent to Q

At steady state, dS/dt = 0, therefore we can rewrite Eq. 2 for one estuarine box as:

Q(Sr-Se)=E(b)r,e(Sr-Se)-E(b)e,s(Se-Ss) (Eq. 3)

Where Sr: river salinity (=0), Se: mean estuary salinity; Ss: mean ocean salinity

E(b)r,e: dispersion coefficient between river and estuary, and E(b)e,s: dispersion coefficient between the estuary and ocean.

By definition the value of E(b)r,e is zero, otherwise we are not at the head (upstream limit of salt intrusion) of the estuary. Likewise Sr is zero, otherwise we're not in the river. Therefore:

QSe=E(b)e,s(Se-Ss) (Eq. 4)

At steady state

E(b)e,s = QSe/(Se-Ss) (Eq 5)

The longitudinal dispersion simulates the turbulent mixiing of water in the estuary during flood and ebb, which supplies salt water to the estuary on the flood tide, and make the sea a little more brackish on the ebb.

You can use the slider to turn off dispersion (set to zero), and see that if the tidal wave did not mix with the estuary water due to turbulence, the estuary would quickly become a freshwater system.