Very simple model demonstrating growth of phytoplankton using Steele's equation for potential production and Michaelis-Menten equation for nutrient limitation.  Both light and nutrients (e.g. nitrogen) are modelled as forcing functions, and the model is "over-calibrated" for stability.  The phytopla
Very simple model demonstrating growth of phytoplankton using Steele's equation for potential production and Michaelis-Menten equation for nutrient limitation.

Both light and nutrients (e.g. nitrogen) are modelled as forcing functions, and the model is "over-calibrated" for stability.

The phytoplankton model approximately reproduces the spring-summer diatom bloom and the (smaller) late summer dinoflagellate bloom.
 
Oyster growth is modelled only as a throughput from algae. Further developments would include filtration as a function of oyster biomass, oyster mortality, and other adjustments.
THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION  The existing global capitalistic growth paradigm is totally flawed  Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a compon
THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)

M.Sc. in Environmental Engineering SIMA 2018 New University of Lisbon, Portugal   Model to represent oyster individual growth by simulating feeding and metabolism. Model (i) partitions metabolic costs into feeding and fasting catabolism; (ii) adds allometry to clearance rate; (iii) adds temperature
M.Sc. in Environmental Engineering SIMA 2018
New University of Lisbon, Portugal

 Model to represent oyster individual growth by simulating feeding and metabolism. Model (i) partitions metabolic costs into feeding and fasting catabolism; (ii) adds allometry to clearance rate; (iii) adds temperature dependence to clearance rate; (iv) illustrates how clearance rate per gram is used if we multiply by the oyster biomass
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:  dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)  Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-se
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:

dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)

Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-sectional area (m2); Q: river flow (m3 s-1); x: length of box (m); E: dispersion coefficient (m2 s-1).

For a given length delta x, Adx = V, the box volume. For a set value of Q, the equation becomes:

VdS/dt = QdS - (d(EA)/dx) dS (Eq. 2)

EA/x, i.e. (m2 X m2) / (m s) = E(b), the bulk dispersion coefficient, units in m3 s-1, i.e. a flow, equivalent to Q

At steady state, dS/dt = 0, therefore we can rewrite Eq. 2 for one estuarine box as:

Q(Sr-Se)=E(b)r,e(Sr-Se)-E(b)e,s(Se-Ss) (Eq. 3)

Where Sr: river salinity (=0), Se: mean estuary salinity; Ss: mean ocean salinity

E(b)r,e: dispersion coefficient between river and estuary, and E(b)e,s: dispersion coefficient between the estuary and ocean.

By definition the value of E(b)r,e is zero, otherwise we are not at the head (upstream limit of salt intrusion) of the estuary. Likewise Sr is zero, otherwise we're not in the river. Therefore:

QSe=E(b)e,s(Se-Ss) (Eq. 4)

At steady state

E(b)e,s = QSe/(Se-Ss) (Eq 5)

The longitudinal dispersion simulates the turbulent mixiing of water in the estuary during flood and ebb, which supplies salt water to the estuary on the flood tide, and make the sea a little more brackish on the ebb.

You can use the slider to turn off dispersion (set to zero), and see that if the tidal wave did not mix with the estuary water due to turbulence, the estuary would quickly become a freshwater system.
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:  dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)  Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-se
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:

dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)

Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-sectional area (m2); Q: river flow (m3 s-1); x: length of box (m); E: dispersion coefficient (m2 s-1).

For a given length delta x, Adx = V, the box volume. For a set value of Q, the equation becomes:

VdS/dt = QdS - (d(EA)/dx) dS (Eq. 2)

EA/x, i.e. (m2 X m2) / (m s) = E(b), the bulk dispersion coefficient, units in m3 s-1, i.e. a flow, equivalent to Q

At steady state, dS/dt = 0, therefore we can rewrite Eq. 2 for one estuarine box as:

Q(Sr-Se)=E(b)r,e(Sr-Se)-E(b)e,s(Se-Ss) (Eq. 3)

Where Sr: river salinity (=0), Se: mean estuary salinity; Ss: mean ocean salinity

E(b)r,e: dispersion coefficient between river and estuary, and E(b)e,s: dispersion coefficient between the estuary and ocean.

By definition the value of E(b)r,e is zero, otherwise we are not at the head (upstream limit of salt intrusion) of the estuary. Likewise Sr is zero, otherwise we're not in the river. Therefore:

QSe=E(b)e,s(Se-Ss) (Eq. 4)

At steady state

E(b)e,s = QSe/(Se-Ss) (Eq 5)

The longitudinal dispersion simulates the turbulent mixiing of water in the estuary during flood and ebb, which supplies salt water to the estuary on the flood tide, and make the sea a little more brackish on the ebb.

You can use the slider to turn off dispersion (set to zero), and see that if the tidal wave did not mix with the estuary water due to turbulence, the estuary would quickly become a freshwater system.
In Chile,  60% of its population are exposed to levels of Particulate Matter (PM) above international standards . Air Pollution is causing  4,000 premature deaths per year , including health costs over US$8 billion.    The System Dynamics Causal Loop Diagram developed herein shows an initial study o
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
Simple (Kind of) food web of the Cane Toad Species. Includes different levels of consumers including predators.
Simple (Kind of) food web of the Cane Toad Species. Includes different levels of consumers including predators.
This model provides a dynamic simulation of the Sverdrup (1953) paper on the vernal blooming of phytoplankton.  The model simulates the dynamics of the mixed layer over the year, and illustrates how it's depth variation leads to conditions that trigger the spring bloom. In order for the bloom to occ
This model provides a dynamic simulation of the Sverdrup (1953) paper on the vernal blooming of phytoplankton.

The model simulates the dynamics of the mixed layer over the year, and illustrates how it's depth variation leads to conditions that trigger the spring bloom. In order for the bloom to occur, production of algae in the water column must exceed respiration.

This can only occur if vertical mixing cannot transport algae into deeper, darker water, for long periods, where they are unable to grow.

Sverdrup, H.U., 1953. On conditions for the vernal blooming of phytoplankton. J. Cons. Perm. Int. Exp. Mer, 18: 287-295
Diagrams of theories of control of destiny at multiple scales as fundamental causes of social determinants of health from  Whitehead 2016 article  in Health and Place
Diagrams of theories of control of destiny at multiple scales as fundamental causes of social determinants of health from Whitehead 2016 article in Health and Place
Modeling forest succession in a northeast deciduous forest.
Modeling forest succession in a northeast deciduous forest.
This incomplete model represents a building that is heated by conduction from the hot outside air, solar gain through the windows, and internal heat from the people and machines inside. To complete the model, define the flow that represents the heat removed by mechanical cooling.
This incomplete model represents a building that is heated by conduction from the hot outside air, solar gain through the windows, and internal heat from the people and machines inside. To complete the model, define the flow that represents the heat removed by mechanical cooling.
Ce modèle est une simulation classique du cycle de productivité dans l'océan, incluant les effets de la thermocline pour désactiver l'advection d'éléments nutritifs dissous et de détritus à la couche superficielle.      Ce modèle illustre un certain nombre de caractéristiques intéressantes notamment
Ce modèle est une simulation classique du cycle de productivité dans l'océan, incluant les effets de la thermocline pour désactiver l'advection d'éléments nutritifs dissous et de détritus à la couche superficielle.  

Ce modèle illustre un certain nombre de caractéristiques intéressantes notamment le lien de trois variables d'état dans un cycle fermé, l'utilisation du temps pour contrôler la durée de l'advection et la fonction modulus pour les données de température qui cyclent annuellement sur plusieurs années. 

Les variables d'état du modèle sont exprimées en unités d'azote (mg N m-3), et l'étalonnage est basé sur:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

Traduction du modèle de Joao G Ferreira (https://insightmaker.com/insight/6838/NPD-model-Nutrients-Phytoplankton-Detritus)
In Chile,  60% of its population are exposed to levels of Particulate Matter (PM) above international standards . Air Pollution is causing  4,000 premature deaths per year , including health costs over US$8 billion.    The System Dynamics Causal Loop Diagram developed herein shows an initial study o
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
European Masters in System Dynamics 2016 New University of Lisbon, Portugal  Simple model to represent oyster individual growth by simulating feeding and metabolism.
European Masters in System Dynamics 2016
New University of Lisbon, Portugal

Simple model to represent oyster individual growth by simulating feeding and metabolism.
This model explains the mussel growth (Mytillus Edulis) based on primary production of phytoplankton biomass.  Light, nutrients and temperature were used as forcing functions over a two year period.
This model explains the mussel growth (Mytillus Edulis) based on primary production of phytoplankton biomass.

Light, nutrients and temperature were used as forcing functions over a two year period.



Very simple model demonstrating growth of phytoplankton using Steele's equation for potential production and Michaelis-Menten equation for nutrient limitation.  Both light and nutrients (e.g. nitrogen) are modelled as forcing functions, and the model is "over-calibrated" for stability.  The phytopla
Very simple model demonstrating growth of phytoplankton using Steele's equation for potential production and Michaelis-Menten equation for nutrient limitation.

Both light and nutrients (e.g. nitrogen) are modelled as forcing functions, and the model is "over-calibrated" for stability.

The phytoplankton model approximately reproduces the spring-summer diatom bloom and the (smaller) late summer dinoflagellate bloom.
 
Oyster growth is modelled only as a throughput from algae. Further developments would include filtration as a function of oyster biomass, oyster mortality, and other adjustments.
 This stock and flow diagram is an updated working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This stock and flow diagram is an updated working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

•Average
(Status Quo) Case

 –Last
30 years of historical EAA data  

 –Used
the past to predict the future 

 –Represents
the status quo case 

 –Includes
the dry portion  and wet portion of AMO
cycle
•Average (Status Quo) Case
–Last 30 years of historical EAA data
–Used the past to predict the future
–Represents the status quo case
–Includes the dry portion  and wet portion of AMO cycle
In Chile,  60% of its population are exposed to levels of Particulate Matter (PM) above international standards . Air Pollution is causing  4,000 premature deaths per year , including health costs over US$8 billion.    The System Dynamics Causal Loop Diagram developed herein shows an initial study o
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.