Your browser (Internet Explorer 8 or lower) is out of date. It has known security flaws and may not display all features of this and other websites. Learn how to update your browser.

X

# Mat375

#### Clone of Flakes no more!

This is an introductory example from Olinick's book An Introduction to Mathematical Models in the Social and Life Sciences. ​

Next up: and SIR, and his interesting model of female birth weights.
• 2 years 2 months ago

#### Clone of SIR (poisoning would be better) Markov Model

This is an example I thought of after reading Olinick's book An Introduction to Mathematical Models in the Social and Life Sciences. ​

It's an SIR-type model, but one where the equilibrium (ws,wi,wr) is always the same, even as the weights in the transition matrix change.

Actually it might be better to think of this as a poisoning model: the rate of infection is constant, and independent of the existence of an infected population. That's more like disease due to an environmental effect (e.g. lead-poisoning from smelters, or mercury poisoning from the burning of coal). So infected would mean "effected", and "recovered" might be "treated" -- and ultimately released, to be exposed again.

This shows that the equilibrium does not determine the transition probabilities: two different transition matrices can have the same ultimate equilibrium.

There is a constraint on the infection rate that I haven't figured out how to build in:

InfectionRate < Min[1,wi/ws, wr/ws]

I can allow InfectionRate to vary up to 1 if I take
ws < wi
and
ws < wr
However if you violate that, you'll get interesting solutions with negative values of populations. The dynamics are pretty interesting in that case, however! If you want to see them, you'll have to remove the constraints that I put on the parameters in the Recover and LossOfImmunity parameters.

Thanks Mike! Interesting examples, as always....
Andy Long

• 2 years 1 month ago

#### Clone of Logistic Growth

This simple model demonstrates logistic growth.The differential equation looks like

y'(t)=by(t)(1-y(t)/K)

where K is the carrying capacity of the quantity y.

y'(t)=by(t) - b/K*y(t)^2

so the loss term is of the form b/K.

A comparable Mathematica file is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/LogisticGrowth-and-DecayModel.nb
• 9 months 3 weeks ago

#### Clone of Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) with death

Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.
Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure
With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.
Resources:
• 1 month 2 weeks ago

#### Clone of MAT375 Clone of Bio103 Predator-Prey Model ("Lotka'Volterra")

Clone of Bio103 Predator-Prey Model ("Lotka'Volterra")
Tags: Education, Chaos, Ecology, Biology, PopulationThanks to Insight Author: John Petersen
Edits by Andy Long
Everything that follows the dashes was created by John Petersen (or at least came from his Insight model). I just wanted to make a few comments.
We are looking at Hare and Lynx, of course. Clone this insight, and change the names.

Then read the text below, to get acquainted with one of the most important and well-known examples of a simple system of differential equations in all of mathematics.

http://www.nku.edu/~longa/classes/mat375/mathematica/Lotka-Volterra.nb------------------------------------------------------------

Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system.

For some time modelers have been particularly interested in internal interactions that result in stable oscillations in the absence of any external forces acting on a system.

The model in this last scenario was independently developed by Alfred Lotka (1924) and Vito Volterra (1926).  Lotka was interested in understanding internal dynamics that might explain oscillations in moth and butterfly populations and the parasitoids that attack them.  Volterra was interested in explaining an increase in coastal populations of predatory fish and a decrease in their prey that was observed during World War I when human fishing pressures on the predator species declined.

Both discovered that a relatively simple model is capable of producing the cyclical behaviors they observed.

Since that time, several researchers have been able to reproduce the modeling dynamics in simple experimental systems consisting of only predators and prey.  It is now generally recognized that the model world that Lotka and Volterra produced is too simple to explain the complexity of most predator-prey dynamics in nature.  And yet, the model significantly advanced our understanding of the critical role of feedback in predator-prey interactions and in feeding relationships that result in community dynamics.

The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:
1. The prey population finds ample food at all times.2. The food supply of the predator population depends entirely on the size of the prey population.3. The rate of change of population is proportional to its size.4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.
Prey
When multiplied out, the prey equation becomesdx/dt = αx - βxy The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  -

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.

• 2 months 1 day ago

#### Clone of Newton's Method

MAT375: Non-linear Exam....

This insight implements Newton's method as an InsightMaker model.

It is important to use Euler's method, with step-size of 1. That's what allows us to get away with this!:)

Fun to try a couple of different cases, so I have built four choices into this example. You can choose the function ("Function Choice" of 0, 1, 2, or 3) using the slider.

Andy LongSpring, 2020

• 1 month 1 week ago

#### Clone of A Simple SIR (Susceptible, Infected, Recovered) Example

This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

• 1 month 3 weeks ago

#### Clone of Newton's Method

MAT375: Non-linear Exam....

This insight implements Newton's method as an InsightMaker model.

It is important to use Euler's method, with step-size of 1. That's what allows us to get away with this!:)

Fun to try a couple of different cases, so I have built four choices into this example. You can choose the function ("Function Choice" of 0, 1, 2, or 3) using the slider.

Andy LongSpring, 2020

• 1 month 1 week ago

#### Clone of Logistic Growth

This simple model demonstrates logistic growth.The differential equation looks like

y'(t)=by(t)(1-y(t)/K)

where K is the carrying capacity of the quantity y. Alternatively,

y'(t)=by(t) - b/K*y(t)^2

so the growth term suggests exponential growth, but there is a loss term is of the form b/K y(t) -- loss is proportional to population (crowding).

A comparable Mathematica file is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/LogisticGrowth-and-DecayModel.nb
• 2 months 5 days ago

#### Clone of Flakes no more!

This is an introductory example from Olinick's book An Introduction to Mathematical Models in the Social and Life Sciences. ​

Next up: and SIR, and his interesting model of female birth weights.
• 2 years 2 months ago

#### Clone of Flakes no more!

This is an introductory example from Olinick's book An Introduction to Mathematical Models in the Social and Life Sciences. ​

Next up: and SIR, and his interesting model of female birth weights.
• 2 years 2 months ago

#### Clone of Logistic Growth

This simple model demonstrates logistic growth.The differential equation looks like

y'(t)=by(t)(1-y(t)/K)

where K is the carrying capacity of the quantity y. Alternatively,

y'(t)=by(t) - b/K*y(t)^2

so the growth term suggests exponential growth, but there is a loss term is of the form b/K y(t) -- loss is proportional to population (crowding).

A comparable Mathematica file is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/LogisticGrowth-and-DecayModel.nb
• 2 months 4 days ago

#### Clone of MAT375 Clone of Bio103 Predator-Prey Model ("Lotka'Volterra")

Clone of Bio103 Predator-Prey Model ("Lotka'Volterra")
Tags: Education, Chaos, Ecology, Biology, PopulationThanks to Insight Author: John Petersen
Edits by Andy Long
Everything that follows the dashes was created by John Petersen (or at least came from his Insight model). I just wanted to make a few comments.
We are looking at Hare and Lynx, of course. Clone this insight, and change the names.

Then read the text below, to get acquainted with one of the most important and well-known examples of a simple system of differential equations in all of mathematics.

http://www.nku.edu/~longa/classes/mat375/mathematica/Lotka-Volterra.nb------------------------------------------------------------

Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system.

For some time modelers have been particularly interested in internal interactions that result in stable oscillations in the absence of any external forces acting on a system.

The model in this last scenario was independently developed by Alfred Lotka (1924) and Vito Volterra (1926).  Lotka was interested in understanding internal dynamics that might explain oscillations in moth and butterfly populations and the parasitoids that attack them.  Volterra was interested in explaining an increase in coastal populations of predatory fish and a decrease in their prey that was observed during World War I when human fishing pressures on the predator species declined.

Both discovered that a relatively simple model is capable of producing the cyclical behaviors they observed.

Since that time, several researchers have been able to reproduce the modeling dynamics in simple experimental systems consisting of only predators and prey.  It is now generally recognized that the model world that Lotka and Volterra produced is too simple to explain the complexity of most predator-prey dynamics in nature.  And yet, the model significantly advanced our understanding of the critical role of feedback in predator-prey interactions and in feeding relationships that result in community dynamics.

The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:
1. The prey population finds ample food at all times.2. The food supply of the predator population depends entirely on the size of the prey population.3. The rate of change of population is proportional to its size.4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.
Prey
When multiplied out, the prey equation becomesdx/dt = αx - βxy The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  -

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.

• 2 months 1 day ago

#### Clone of Basic Model, Tyson Lynx and Hare

The basic model of Modelling the Canada lynx and snowshoe hare population cycle: The role of specialist predators (Tyson, et al.) demonstrates logistic growth in prey, and in predator (with prey dependence for carrying capacity). But interestingly, one possibility is limit cycles, which mimic the cycling of the populations in nature.

The differential equations for the population of hare (x) is

x'(t) = rx(1-x/K)            - gamma x^2/(x^2+eta^2)            - alpha y x/(x+mu)
where K is the logistic carrying capacity of the prey (hare), in the absence of predation; the second term is a "generalist predation" term;  and the third term is the "specialist predation" (in the limit as the prey gets big, this becomes simply proportional to y (the lynx population)).

The differential equations for the population of lynx (y) is
y'(t) = sy(1- qy/x) = sy - sqy^2/x
for the predator (lynx), which is essentially logistic growth. Its growth term suggests exponential growth, but there is a loss term of the form sqy^2/x -- loss is proportional to population (crowding), and inversely proportional to prey density. As the hare population goes to zero, so shall the lynx....

As one can see, the prey density won't change if y=x/q. If the prey density were not changing at the same time, the system would be at equilibrium.

In this InsightMaker model, I scaled the second equation by multiplying by q, then replace y by w=qy throughout both equations. This requires a slight change in the prey equation -- alpha replaced by the ratio of alpha/q.  (I used my favorite mathematical trick, of multiplying by the appropriate form of 1!)
So what we're really looking at here is the system

x'(t) = rx(1-x/K)            - gamma x^2/(x^2+eta^2)            - alpha/q w x/(x+mu)w'(t) = sw(1- w/x)

where w(t)=qy(t).

Tyson, et al. took q to be about 212 for hare and lynx -- so that it requires about 212 hare to allow for one lynx to survive at "equilibrium".

However, when alpha -- the hares/lynx/year -- gets sufficiently large (e.g. 1867 -- and that does seem like a lot of hares per lynx per year...:), limit cycles develop (rather than a stable equilibrium). This means that the populations oscillate about the equilibrium values, rather than stabilize at those values.

Author: Andy Long, Northern Kentucky University (2020)

Reference: Tyson, Rebecca, Sheena Haines,  Karen Hodges. Modelling the Canada lynx and snowshoe hare population cycle: The role of specialist predators. Theoretical Ecology. 3, 97–111 (2010). https://doi.org/10.1007/s12080-009-0057-1
Resource: A comparable Mathematica model can be found at  http://ceadserv1.nku.edu/longa//classes/mat375/days/Mathematica/BasicModel.nb, which allows one to experiment a little more easily than one can with this InsightMaker model.
• 1 month 3 weeks ago

#### Clone of Logistic Growth

This simple model demonstrates logistic growth.The differential equation looks like

y'(t)=by(t)(1-y(t)/K)

where K is the carrying capacity of the quantity y. Alternatively,

y'(t)=by(t) - b/K*y(t)^2

so the growth term suggests exponential growth, but there is a loss term is of the form b/K y(t) -- loss is proportional to population (crowding).

A comparable Mathematica file is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/LogisticGrowth-and-DecayModel.nb
• 2 months 5 days ago

#### Clone of Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) with death

Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.
Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure
With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.
Resources:
• 1 month 2 weeks ago

#### Clone of A Simple SIR (Susceptible, Infected, Recovered) Example

This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

• 1 month 3 weeks ago

#### Clone of Logistic Growth

This simple model demonstrates logistic growth.The differential equation looks like

y'(t)=by(t)(1-y(t)/K)

where K is the carrying capacity of the quantity y. Alternatively,

y'(t)=by(t) - b/K*y(t)^2

so the growth term suggests exponential growth, but there is a loss term is of the form b/K y(t) -- loss is proportional to population (crowding).

A comparable Mathematica file is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/LogisticGrowth-and-DecayModel.nb
• 2 months 4 days ago

#### Clone of Non-dimensionalized Logistic Growth

This (simplest!) model demonstrates logistic growth.The original differential equation looks like

y'(t) = b y(t) (1 - y(t)/K)

where K is the carrying capacity of the quantity y.

But if we divide each side of the equation by K, we obtain
d(y/K)/dt = b (y/K) (1-y/K)
Defining a new variable w, the population relative to its carrying capacity, we obtain

dw/dt = b w (1 - w)
Finally we divide both sides by b, to write
dw/d(bt) = w (1 - w)
So if we work in dimensionless time units of bt, we have
w' = w (1 - w)
where the derivative is with respect to the variable bt=τ. .
τ=τ
This       This equation, as simple as possible, contains all the dynamics (all the ways the population can behave), while masking the "trivialities"; but it kind of hides the physical aspects of the problem. So it's easy to study, but harder to interpret: alas, you can't have it all!:)

τ=1 when t=1b: so if b=.5/year, then τ=1 when t=2.

So the larger b (the greater the birthrate), the shorter the real time t to give τ=1. τ=τ=
τ=
• 2 months 3 days ago

#### Clone of Newton's Method

MAT375: Non-linear Exam....

This insight implements Newton's method as an InsightMaker model.

It is important to use Euler's method, with step-size of 1. That's what allows us to get away with this!:)

Fun to try a couple of different cases, so I have built four choices into this example. You can choose the function ("Function Choice" of 0, 1, 2, or 3) using the slider.

Andy LongSpring, 2020

• 1 month 1 week ago

#### Clone of Basic Model, Tyson Lynx and Hare

The basic model of Modelling the Canada lynx and snowshoe hare population cycle: The role of specialist predators (Tyson, et al.) demonstrates logistic growth in prey, and in predator (with prey dependence for carrying capacity). But interestingly, one possibility is limit cycles, which mimic the cycling of the populations in nature.

The differential equations for the population of hare (x) is

x'(t) = rx(1-x/K)            - gamma x^2/(x^2+eta^2)            - alpha y x/(x+mu)
where K is the logistic carrying capacity of the prey (hare), in the absence of predation; the second term is a "generalist predation" term;  and the third term is the "specialist predation" (in the limit as the prey gets big, this becomes simply proportional to y (the lynx population)).

The differential equations for the population of lynx (y) is
y'(t) = sy(1- qy/x) = sy - sqy^2/x
for the predator (lynx), which is essentially logistic growth. Its growth term suggests exponential growth, but there is a loss term of the form sqy^2/x -- loss is proportional to population (crowding), and inversely proportional to prey density. As the hare population goes to zero, so shall the lynx....

As one can see, the prey density won't change if y=x/q. If the prey density were not changing at the same time, the system would be at equilibrium.

In this InsightMaker model, I scaled the second equation by multiplying by q, then replace y by w=qy throughout both equations. This requires a slight change in the prey equation -- alpha replaced by the ratio of alpha/q.  (I used my favorite mathematical trick, of multiplying by the appropriate form of 1!)
So what we're really looking at here is the system

x'(t) = rx(1-x/K)            - gamma x^2/(x^2+eta^2)            - alpha/q w x/(x+mu)w'(t) = sw(1- w/x)

where w(t)=qy(t).

Tyson, et al. took q to be about 212 for hare and lynx -- so that it requires about 212 hare to allow for one lynx to survive at "equilibrium".

However, when alpha -- the hares/lynx/year -- gets sufficiently large (e.g. 1867 -- and that does seem like a lot of hares per lynx per year...:), limit cycles develop (rather than a stable equilibrium). This means that the populations oscillate about the equilibrium values, rather than stabilize at those values.

Author: Andy Long, Northern Kentucky University (2020)

Reference: Tyson, Rebecca, Sheena Haines,  Karen Hodges. Modelling the Canada lynx and snowshoe hare population cycle: The role of specialist predators. Theoretical Ecology. 3, 97–111 (2010). https://doi.org/10.1007/s12080-009-0057-1
Resource: A comparable Mathematica model can be found at  http://ceadserv1.nku.edu/longa//classes/mat375/days/Mathematica/BasicModel.nb, which allows one to experiment a little more easily than one can with this InsightMaker model.
• 1 month 3 weeks ago

#### Clone of Basic Model, Tyson Lynx and Hare

The basic model of Modelling the Canada lynx and snowshoe hare population cycle: The role of specialist predators (Tyson, et al.) demonstrates logistic growth in prey, and in predator (with prey dependence for carrying capacity). But interestingly, one possibility is limit cycles, which mimic the cycling of the populations in nature.

The differential equations for the population of hare (x) is

x'(t) = rx(1-x/K)            - gamma x^2/(x^2+eta^2)            - alpha y x/(x+mu)
where K is the logistic carrying capacity of the prey (hare), in the absence of predation; the second term is a "generalist predation" term;  and the third term is the "specialist predation" (in the limit as the prey gets big, this becomes simply proportional to y (the lynx population)).

The differential equations for the population of lynx (y) is
y'(t) = sy(1- qy/x) = sy - sqy^2/x
for the predator (lynx), which is essentially logistic growth. Its growth term suggests exponential growth, but there is a loss term of the form sqy^2/x -- loss is proportional to population (crowding), and inversely proportional to prey density. As the hare population goes to zero, so shall the lynx....

As one can see, the prey density won't change if y=x/q. If the prey density were not changing at the same time, the system would be at equilibrium.

In this InsightMaker model, I scaled the second equation by multiplying by q, then replace y by w=qy throughout both equations. This requires a slight change in the prey equation -- alpha replaced by the ratio of alpha/q.  (I used my favorite mathematical trick, of multiplying by the appropriate form of 1!)
So what we're really looking at here is the system

x'(t) = rx(1-x/K)            - gamma x^2/(x^2+eta^2)            - alpha/q w x/(x+mu)w'(t) = sw(1- w/x)

where w(t)=qy(t).

Tyson, et al. took q to be about 212 for hare and lynx -- so that it requires about 212 hare to allow for one lynx to survive at "equilibrium".

However, when alpha -- the hares/lynx/year -- gets sufficiently large (e.g. 1867 -- and that does seem like a lot of hares per lynx per year...:), limit cycles develop (rather than a stable equilibrium). This means that the populations oscillate about the equilibrium values, rather than stabilize at those values.

Author: Andy Long, Northern Kentucky University (2020)

Reference: Tyson, Rebecca, Sheena Haines,  Karen Hodges. Modelling the Canada lynx and snowshoe hare population cycle: The role of specialist predators. Theoretical Ecology. 3, 97–111 (2010). https://doi.org/10.1007/s12080-009-0057-1
Resource: A comparable Mathematica model can be found at  http://ceadserv1.nku.edu/longa//classes/mat375/days/Mathematica/BasicModel.nb, which allows one to experiment a little more easily than one can with this InsightMaker model.
• 1 month 4 weeks ago

#### Clone of Flakes no more!

This is an introductory example from Olinick's book An Introduction to Mathematical Models in the Social and Life Sciences. ​

Next up: and SIR, and his interesting model of female birth weights.
• 2 years 2 months ago

#### Clone of Basic Model, Tyson Lynx and Hare

The basic model of Modelling the Canada lynx and snowshoe hare population cycle: The role of specialist predators (Tyson, et al.) demonstrates logistic growth in prey, and in predator (with prey dependence for carrying capacity). But interestingly, one possibility is limit cycles, which mimic the cycling of the populations in nature.

The differential equations for the population of hare (x) is

x'(t) = rx(1-x/K)            - gamma x^2/(x^2+eta^2)            - alpha y x/(x+mu)
where K is the logistic carrying capacity of the prey (hare), in the absence of predation; the second term is a "generalist predation" term;  and the third term is the "specialist predation" (in the limit as the prey gets big, this becomes simply proportional to y (the lynx population)).

The differential equations for the population of lynx (y) is
y'(t) = sy(1- qy/x) = sy - sqy^2/x
for the predator (lynx), which is essentially logistic growth. Its growth term suggests exponential growth, but there is a loss term of the form sqy^2/x -- loss is proportional to population (crowding), and inversely proportional to prey density. As the hare population goes to zero, so shall the lynx....

As one can see, the prey density won't change if y=x/q. If the prey density were not changing at the same time, the system would be at equilibrium.

In this InsightMaker model, I scaled the second equation by multiplying by q, then replace y by w=qy throughout both equations. This requires a slight change in the prey equation -- alpha replaced by the ratio of alpha/q.  (I used my favorite mathematical trick, of multiplying by the appropriate form of 1!)
So what we're really looking at here is the system

x'(t) = rx(1-x/K)            - gamma x^2/(x^2+eta^2)            - alpha/q w x/(x+mu)w'(t) = sw(1- w/x)

where w(t)=qy(t).

Tyson, et al. took q to be about 212 for hare and lynx -- so that it requires about 212 hare to allow for one lynx to survive at "equilibrium".

However, when alpha -- the hares/lynx/year -- gets sufficiently large (e.g. 1867 -- and that does seem like a lot of hares per lynx per year...:), limit cycles develop (rather than a stable equilibrium). This means that the populations oscillate about the equilibrium values, rather than stabilize at those values.

Author: Andy Long, Northern Kentucky University (2020)

Reference: Tyson, Rebecca, Sheena Haines,  Karen Hodges. Modelling the Canada lynx and snowshoe hare population cycle: The role of specialist predators. Theoretical Ecology. 3, 97–111 (2010). https://doi.org/10.1007/s12080-009-0057-1
Resource: A comparable Mathematica model can be found at  http://ceadserv1.nku.edu/longa//classes/mat375/days/Mathematica/BasicModel.nb, which allows one to experiment a little more easily than one can with this InsightMaker model.
• 1 month 3 weeks ago