国連が公表している人口の将来推計とOECDが公表している各種経済統計を参考にして、2000年から2100年までの人口・経済見通しを作成するためのダイナミクスモデル。     ①人口:年少(0-14歳)・再生産年齢人口(15-49歳)・後期生産年齢人口(50-64歳)・老年人口(65歳以上)にグループ分けし、出生数(再生産年齢人口×出生率)と死亡数(年代別死亡率×年代別人口の合計)を算出して総人口を推計     ②経済:2000年のGDPをストックとして、コブ=ダグラス型関数に基づき労働力人口(15歳以上人口×労働参加率)と資本ストック(総固定資本形成)および全要素生産性の成長率をフローとし、購
国連が公表している人口の将来推計とOECDが公表している各種経済統計を参考にして、2000年から2100年までの人口・経済見通しを作成するためのダイナミクスモデル。

①人口:年少(0-14歳)・再生産年齢人口(15-49歳)・後期生産年齢人口(50-64歳)・老年人口(65歳以上)にグループ分けし、出生数(再生産年齢人口×出生率)と死亡数(年代別死亡率×年代別人口の合計)を算出して総人口を推計

②経済:2000年のGDPをストックとして、コブ=ダグラス型関数に基づき労働力人口(15歳以上人口×労働参加率)と資本ストック(総固定資本形成)および全要素生産性の成長率をフローとし、購買力平価レートの変化率も加味して将来のGDP(購買力平価換算)を算出

現状投影シナリオ:2000年から2100年までに制度や前提条件の極端な変更はなく、現状のトレンドが続くと想定される場合
 Model supporting research of investment vs. austerity implications. Please refer to  Modern Money & Public Purpose Video .  @ LinkedIn ,  Twitter ,  YouTube

Model supporting research of investment vs. austerity implications. Please refer to Modern Money & Public Purpose Video.

@LinkedInTwitterYouTube

Modern
Monetary theory (MMT) has shown how modern monetary systems actually work. It
has shown  that governments that issue
their own currency, such as the US, can never run out of money or be forced to
default on debt issued in their own currency. It has also demonstrated that
government spending t
Modern Monetary theory (MMT) has shown how modern monetary systems actually work. It has shown  that governments that issue their own currency, such as the US, can never run out of money or be forced to default on debt issued in their own currency. It has also demonstrated that government spending to stimulate the economy is logical and that the resulting deficit is irrelevant - the government always has the monetary means to eliminate it. This directly contradicts neoliberal doctrine that wants to limit government spending and posits that deficits destabilize the economy. Neoliberalism often constitutes a 'worldview' and 'personal identity'. Those who hold such strong beliefs cannot be persuaded to abandon them using rational arguments and facts - psychological reasons usually impede it as research has shown. The worldwide dominance of the doctrine, vested interests and psychologically grounded opposition suffocate MMT and rational arguments showing its superiority are seemingly of no avail. 

Trying to look objectively how tax changes to the wealthiest could lower debt and any impact to the economy.
Trying to look objectively how tax changes to the wealthiest could lower debt and any impact to the economy.
 Model in support of an article being written about Investment vs Austerity.  @ LinkedIn ,  Twitter ,  YouTube

Model in support of an article being written about Investment vs Austerity.

@LinkedInTwitterYouTube

  Sike Liu's model on COVID-19 & Burnie Economy       This model contains three parts, the first part stimulates the COVID-19 pandemic outbreak in Burnie; the second part describes possible government policies on pandemic control; and the third part examines the possible negative impact on econo
Sike Liu's model on COVID-19 & Burnie Economy

 

This model contains three parts, the first part stimulates the COVID-19 pandemic outbreak in Burnie; the second part describes possible government policies on pandemic control; and the third part examines the possible negative impact on economy growth from those policies.


Assumptions:

1. The state boarder has already been closed and all new arrivals in Burnie need to enter a fixed period of quarantine. And the quarantine rate measures the strength of the government policy on quarantine (such as length and method).

2. Patient zero refers to the initial number of undetected virus carriers in the community.

3. Government policies such as social distancing, compulsory mask and lock down could effectively reduce community’s exposure to the virus.

4. Social distancing and compulsory mask will be triggered when COVID-19 cases reach and beyond 10 and lock down will be triggered when cases reach and beyond 1000.

4. High vaccine rate, on the other hand, could effectively reduce the exposed people’s chance of getting infected.

5. Only when vaccine rate reaches 0.6 and beyond, then the spread of COVID-19 will be significantly slowed.

6. Vaccine can’t 100% prevent the infection of the virus.

7.The infected people will need to be tested so that they could be counted as COVID-19 cases and the test rate decides the percentage of infected people being tested.

8. After people recover, there are chances of them losing immunity and the immunity lost rate measures that.

9. The COVID-19 cases could also be detected at quarantine facilities, and the quarantine process will effectively reduce the Infection and exposure rate.

10. Social distancing and compulsory mask wearing are considered as light restrictions in this model and will have less impact on both supply and demand side, and lockdown is considered as heavy restriction which will have strong negative impact on economy growth in this model.

11. In this model, light restrictions will have more negative impacts on the demand side compared to the supply side.

12. In this model, both supply side and demand side will power the economy growth.

 

Interest hints:

The vaccine could significantly reduce the spread of COVID-19 and effectively reduce the number of COVID-19 cases.

The number of the COVID-19 cases will eventually be stabilized when the number of susceptible is running out in a community (reached community immunity).

Quarantine could slightly reduce the cases numbers, but the most effective way is to reduce the number of new arrivals.

How the 4-H club became a marketing thingy for DuPont
How the 4-H club became a marketing thingy for DuPont
Peak oil will occur when it is too expensive to
bring oil to the surface and not when reserves reach their limit. Companies
must make a profit to be able to extract oil and stay in the oil business.  However, that endeavour is becoming more and
more difficult because of diminishing returns. They hav
Peak oil will occur when it is too expensive to bring oil to the surface and not when reserves reach their limit. Companies must make a profit to be able to extract oil and stay in the oil business.  However, that endeavour is becoming more and more difficult because of diminishing returns. They have to dig ever deeper to get to the oil  at ever increasing costs, and the oil they find deep down is of a lesser quality.  We have now reached a point where the price needed by oil companies to make a profit and stay in business is far higher than the price  the market can bear. That price is probably about $ 100 per barrel - and rising every year! A market price o $ 100 will almost certainly cause a sharp recession and cause the price of oil to fall back beyond the point of profitability. For example, the combined profit of ExxonMobile, Chevron and Conocophillips fell from 80.4 billion in 2011 to only 3.7 billon in 2016 - see URL below. What the market can bear depends on the spending power of the mass of non-elite workers. The CLD shows the negative feedback loops that prevent oil prices to rise above the level of  affordability. If non-elite workers cannot afford the goods and services offered,  then there will be no demand for them and by extension for oil.  In this situation the market price will not the cover the cost that oil companies need to extract oil. Oil supplies will decline and so will economic activity!

https://srsroccoreport.com/the-blood-bath-continues-in-the-u-s-major-oil-industry/

Neoliberalism
uses a deceptive narrative to declare that money the government spends into the economy in excesses of the taxes it collects creates a ‘government debt’.
In fact, the money the government spends into the economy in excess of the
taxes is an income, a benefit for the private sector. Whe
Neoliberalism uses a deceptive narrative to declare that money the government spends into the economy in excesses of the taxes it collects creates a ‘government debt’. In fact, the money the government spends into the economy in excess of the taxes is an income, a benefit for the private sector. When the government issues bonds, the money the private sector uses to buy them via banks comes from a residual cushion of dollars that the government already spent into the economy but has not yet taxed back.  If this were not the case, if the government had taxed back all the money it spent into the economy, then the economy could not function. There would be no dollars in the economy, since the government is the sole supplier of U.S. dollars! In the doted rectangle in the graph you can see that the dollars paid to the government for bonds sits in a dollar asset account. When the government issues bonds it simply provides the public and institutions with a desirable money substitute that pays interest i.e. Treasury bonds. It is a swap of one kind of financial asset for another. To register this swap the government debits the dollar asset account and credits the bond account.  When the time comes to redeem (take back) the bonds, all the government does is revers the swap, and that’s all!  When you look at the total amount of finacial assets in the private sector,  these remain constant at $ 25 BN  after the payment of $ 5 BN taxes. This implies that  no lending of financial assets of the private sector to the government has taken place during the swap operation. The money was always there. The debt mountain is an illusion!
This is a model which explains the difference between Mountain bikes riding compared to logging in the Tasmanian forests.
This is a model which explains the difference between Mountain bikes riding compared to logging in the Tasmanian forests.
A detailed description of all model input parameters is available  here . These are discussed further  here  and  here .  Update 29 June 2016 (v2.6): Added historical emplacement for wind and PV capacity. The maximum historical emplacement rates are then maintained from year 114/115 until the end of
A detailed description of all model input parameters is available here. These are discussed further here and here.

Update 29 June 2016 (v2.6): Added historical emplacement for wind and PV capacity. The maximum historical emplacement rates are then maintained from year 114/115 until the end of the model period. This acts as a base emplacement rate that is then augmented with the contribution made via the feedback control mechanism. Note that battery buffering commences only once the additional emplacement via the feedback controller kicks in. This means that there is a base capacity for both wind and PV for which no buffering is provided, slightly reducing the energy services required for wind and PV supplies, as well as associated costs. Contributions from biomass and nuclear have also been increased slightly, in line with the earlier intention that these should approximately double during the transition period. This leads to a modest reduction in the contributions required from wind and PV.

Added calculation of global mean conversion efficiency energy to services on primary energy basis. This involves making a compensation to the gross energy outputs for all thermal electricity generation sources. The reason for this is that standard EROI analysis methodology involves inclusion of energy inputs on a primary energy equivalent basis. In order to convert correctly between energy inputs and energy service inputs, the reference conversion efficiency must therefore be defined on a primary energy basis. Previously, this conversion was made on the basis of the mean conversion efficiency from final energy to energy services.

Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.

Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.

Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.

Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.

Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.

Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.

**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in this Excel spreadsheet.

Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**

The original "standard run" version of the model is available here.
The statement that there can be no economic activity
without  energy and that fossil fuels are
finite contrasts with the fact that money is not finite and can be created by governments
via their central banks at zero marginal cost whenever needed.

 An important fact about COAL, GAS and OIL (even
wh
The statement that there can be no economic activity without  energy and that fossil fuels are finite contrasts with the fact that money is not finite and can be created by governments via their central banks at zero marginal cost whenever needed.

An important fact about COAL, GAS and OIL (even when produced via fracking) is that their net energy ratios are falling rapidly. In other words the energy needed to extract a given quantity of fossil fuels is constantly increasing. This ratio (Energy Invested on Energy Returned - EIOER) provides yet another warning that we can no longer rely on fossil fuels to power our economies. We cannot wait until the ratio falls to 1/1 before we invest seriously in alternative sources of energy, because by then industrial society as we know it doday will have ceased to exist. 

PS: A link between growth in energy consumption and GDP growth is clearly illustrated on slide 13 of Gail Tverberg's presentaion entitled ''Oops! The world economy depends on an energy-related bubble''. In fact, the slide shows that growth in energy consumption usually precedes GDP growth.

https://gailtheactuary.files.wordpress.com/2015/10/oops-debt-bubble-10_30_15.pdf

There is a concern that Logging has an adverse effect on the experience of tourist mountain bikers looking for nature experiences in Derby, Tasmaina.    This model helps give more insight on the relationship between the forest industry and mountain tourism, showing that despite the changes and incre
There is a concern that Logging has an adverse effect on the experience of tourist mountain bikers looking for nature experiences in Derby, Tasmaina.

This model helps give more insight on the relationship between the forest industry and mountain tourism, showing that despite the changes and increase in logging activities with the aim of generating more income from timber, there can be a balance between mountain tourism and the forest industry.
 This model simulates a COVID outbreak occurring at Burnie, Tasmania.
It links the extent to the pandemic with governments intervention policies
aiming to limit the spread of the virus. The other part of the model illustrates
how will the COVID statistics and the government enforcement jointly influ

This model simulates a COVID outbreak occurring at Burnie, Tasmania. It links the extent to the pandemic with governments intervention policies aiming to limit the spread of the virus. The other part of the model illustrates how will the COVID statistics and the government enforcement jointly influence the economic environment in the community. A number of variables are taken into account, indicating positive or negative relationship in the infection and the economy model respectively.

 

Assumptions

·         Government takes responsive actions when the number of acquired cases exceeds 10.

·         Government’s prompt actions, involving closure of the state border, lockdown within the city, plans on mandatory vaccination and testing, effectively control the infection status.

·         Economic activities are reduced due to stagnation in statewide tourism, closure of brick-and-mortar businesses, and increased unemployment rate, as results of government restrictions.

 

Insights

Government’s rapid intervention can effectively reduce the infected cases. The national vaccination rollout campaign raises vaccination rate in Australians, and particularly influence the death rate in the infection model. Please drag the slider of vaccination to a higher rate and run the model to compare the outcomes.

Although local economy is negatively affected by government restriction policies, consumer demand in online shopping and government support payments neutralize the negative impact on economy and maintain the level of economic activities when infections get controlled. 

Scratch build of a stock-flow consistent model of a closed economy, based on a current transactions matrix
Scratch build of a stock-flow consistent model of a closed economy, based on a current transactions matrix
 Overview:   The model shows the industry competition and relationship between Forrestry and Mountain Bike Trip in Derby, Tasmania. The aim of the simulation is to find a balance between the co-existence of these two industry.      How Does the Model Work?       Both industries will generate incomes
Overview: 
The model shows the industry competition and relationship between Forrestry and Mountain Bike Trip in Derby, Tasmania. The aim of the simulation is to find a balance between the co-existence of these two industry.

How Does the Model Work?

Both industries will generate incomes. Firstly, income is generated from the sale of timber through logging. In addition, income is also generated from the consumption of mountain bike riders. Regarding to the Forrestry industry, people cut down trees because there is a market demand for timber. The timber is sold for profits. However, the experience of mountain biking tourism is largely affected by the low regeneration rate of trees and the degradation of the environment and landscape due to tree felling. People have better riding experiences when trees are abundant and the scenery is beautiful. People's satisfaction and expectations depend on the scenery and experience. Recommendations of past riders will also impact the tourists amount.

Interesting Insights

The income generated by logging can provide a significant economic contribution to Tasmania, but excessive logging can lead to environmental problems and a reduction in visitors. Excessive logging can lead to a decline in tourism in the mountains, which will affect tourism. Despite the importance of forestry, tourism can also provide a significant economic contribution to Tasmania. The government should find a balance between the two industries while maintaining the number of tourists. 



 This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary  here  and  here . As of 2 September 2015, ongoing development has now shifted to  this version  of the model.   The significance of reduced energy return on energy invested (EROI) in the tr
This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary here and here. As of 2 September 2015, ongoing development has now shifted to this version of the model.

The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model illustrates the impact of EROI in large-scale energy transition using a system dynamics approach. The variables of primary interest here are: 1) net energy available to "the rest of the economy" as renewable penetration increases [Total final energy services out to the economy]; and 2) the size of the energy sector as a proportion of overall economic activity, treating energy use as a very rough proxy for size [Energy services ratio].
This model aggregates energy supply in the form of fuels and electricity as a single variable, total final energy services, and treats the global economy as a single closed system.
The model includes all major incumbent energy sources, and assumes a transition to wind, PV, hydro and nuclear generated electricity, plus biomass electricity and fuels. Hydro, biomass and nuclear growth rates are built into the model from the outset, and wind and PV emplacement rates respond to the built-in retirement rates for fossil energy sources, by attempting to make up the difference between the historical maximum total energy services out to the global economy, and the current total energy services out. Intermittency of PV and wind are compensated via Li-ion battery storage. Note, however, that seasonal variation of PV is not fully addressed i.e. PV is modeled using annual and global average parameters. For this to have anything close to real world validity, this would require that all PV capacity is located in highly favourable locations in terms of annual average insolation, and that energy is distributed from these regions to points of end use. The necessary distribution infrastructure is not included in the model at this stage.
It is possible to explore the effect of seasonal variation with PV assumed to be distributed more widely by de-rating capacity factor and increasing the autonomy period for storage.

This version of the model takes values for emplaced capacities of conventional sources (i.e. all energy sources except wind and PV) as exogenous inputs, based on data generated from earlier endogenously-generated emplaced capacities (for which emplacement rates as a proportion of existing installed capacity were the primary exogenous input).
You've probably heard the comment "It's the economy stupid!" Well I've finally concluded that when it comes to the economy "It's stupidity stupid!" might be a more appropriate phrase. @ LinkedIn ,  Twitter ,  YouTube
You've probably heard the comment "It's the economy stupid!" Well I've finally concluded that when it comes to the economy "It's stupidity stupid!" might be a more appropriate phrase.
  Simulation of the effect of a basic income on rental prices based on the assumption people are only willing to spend a certain percentage of their income on rent.
Simulation of the effect of a basic income on rental prices based on the assumption people are only willing to spend a certain percentage of their income on rent.