Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
 If no attempt is made to eradicate SARS-CoV-2 it will eventually
become endemic, ineradicable, at a high never-ending cost to world in terms of economic
growth, human health and lives. The current strategy adopted by most
governments is to impose  restrictive
measures when the virus threatens to ov

If no attempt is made to eradicate SARS-CoV-2 it will eventually become endemic, ineradicable, at a high never-ending cost to world in terms of economic growth, human health and lives. The current strategy adopted by most governments is to impose  restrictive measures when the virus threatens to overwhelm hospital services and to relax these restrictions as this danger recedes. This is short-sighted. It cannot eliminate the highly infectious delta variant, which has an estimated R0-value of between 6 & 9. Periodic lockdowns will be hard to avoid in the future.

However, eradication is possible, herd immunity can be achieved quickly worldwide, reducing the R0 permanently to below 1, which will lead to the disappearance of the virus. Critical in achieving this is Ivermectin, a medicine that is cheap,  readily available and can be manufactured by most countries. A recent meta study has shown that Ivermectin, prophylactically employed, can prevent infection with the virus  by 86 % on average – very similar to the efficacy of vaccines. Eradication will require employment of all the instruments shown in the graph: future generations do not have to live with this plague. 

 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
  ABOUT THE MODEL   This is a dynamic model that shows the correlation between the
health-related policies implemented by the Government in response to COVID-19 outbreak
in Burnie, Tasmania, and the policies’ impact on the Economic activity of the
area.   

   ASSUMPTIONS  

 The increase in the num

ABOUT THE MODEL

This is a dynamic model that shows the correlation between the health-related policies implemented by the Government in response to COVID-19 outbreak in Burnie, Tasmania, and the policies’ impact on the Economic activity of the area.

 ASSUMPTIONS

The increase in the number of COVID-19 cases is directly proportional to the increase in the Government policies in the infected region. The Government policies negatively impact the economy of Burnie, Tasmania.

INTERESTING INSIGHTS

1. When the borders are closed by the government, the economy is severely affected by the decrease of revenue generated by the Civil aviation/Migration rate. As the number of COVID-19 cases increase, the number of people allowed to enter Australian borders will also decrease by the government. 

2. The Economic activity sharply increases and stays in uniformity. 

3. The death rate drastically decreased as we increased test rate by 90%.


   Explanation of the Model    This is a Model of COVID-19 outbreak in Burnie, Tasmania which shows the government actions in response to the pandemic COVID-19 and its affects on the Economy. The government health policy changes depending on the reported cases, which is a dependent upon the testing
Explanation of the Model
This is a Model of COVID-19 outbreak in Burnie, Tasmania which shows the government actions in response to the pandemic COVID-19 and its affects on the Economy. The government health policy changes depending on the reported cases, which is a dependent upon the testing rate. 

Assumptions
Lockdown and travel ban were the main factor in government policy. It negatively impacts on the Economic growth as individuals are not going out which is directly affects the business around the world, in this insight 'Burnie'. This reduces the economic growth and the factors positively effecting economic growth such as Tourism.

Government policies has a negative impact on Exposer of individuals. Moreover, it also has a negative impact on chances of infection when exposed as well as other general infection rate.
 

Interesting Insight 
There is a significant impact of test rating on COVID-19 outbreak. Higher rates increases the government involvement, which decreases cases as well as the total death. 
In contrast, lower testing rates increase the death rate and cases. 

Tourism which plays a avital role in Tasmanian Economy greatly affects the Economic Growth. The decline of Tourism in parts of Tasmania such as Burnie, would directly decrease the economy of Tasmania.


  
 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
 Dieses Causal
Loop Diagramm (CLD) versucht in vereinfachter Weisse die Wesentliche Dynamik des
Mars-CoV-2 zu veranschaulichen. Der Motor hinter den Infektionen ist offensichtlich
eine selbstverstärkende Rückkopplungsschleife, und ausschlaggebend in diesem
Bezug ist der R-Wert. Wenn der R-Wert unter

Dieses Causal Loop Diagramm (CLD) versucht in vereinfachter Weisse die Wesentliche Dynamik des Mars-CoV-2 zu veranschaulichen. Der Motor hinter den Infektionen ist offensichtlich eine selbstverstärkende Rückkopplungsschleife, und ausschlaggebend in diesem Bezug ist der R-Wert. Wenn der R-Wert unter 1 liegt, dann heisst das, dass eine infizierte Person während des Zeitraums, in dem sie infektiös ist, weniger als eine andere Person infiziert.  Liegt der Wert über 1, dann steckt die Infizierte mehr als eine andere Person an, und das Virus verbreitet sich exponentiell. Die Schleifen, die blaue Pfeile enthalten, sind negative Rückkopplungsschleifen – sie bremsen die Verbreitung des Virus. Das Diagramm suggeriert, dass der R-Wert als Schlüssel zur Kontrolle der Verbreitung des Virus dienen könnte. Sollte der Wert über 1 steigen, so müssten  Schutzmassnahem eingeführt werden. Ist der Wert unter 1, dann sind die negativen Schleifen dominierend und einige Massnahmen könnten gelockert werden. 

 Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

  This model aims to show that how Tasmania government's Covid-19 policy can address the spread of the pandemic and in what way these policy can damage the economy.     This model assumes that if the COVID-19 cases are more than 10, the government will take action such as quarantine and lockdown at
This model aims to show that how Tasmania government's Covid-19 policy can address the spread of the pandemic and in what way these policy can damage the economy.

This model assumes that if the COVID-19 cases are more than 10, the government will take action such as quarantine and lockdown at the area. These policy can indirectly affect the local economy in many different way. At the same time, strict policy may be essential for combating Covid-19.

From the simulation of the model, we can clearly see that the economy of Burine will be steady increase when government successfully reduces the COVID-19 cased and make it spreading slower.

Interesting finding: In this pandemic, the testing rate and the recovery rate are important to stop Covid-19 spreading. Once the cases of Covid-19 less than 10, the government might stop intervention and the economy of Burnie will back to normal.

 Modelo epidemiológico simples   SIR: Susceptíveis - Infectados - Recuperados        Dados iniciais do Brasil em 04 Abr 2020    Fonte:   https://www.worldometers.info/coronavirus/country/brazil/
Modelo epidemiológico simples
SIR: Susceptíveis - Infectados - Recuperados

Dados iniciais do Brasil em 04 Abr 2020
   Evolution of Covid-19 in Brazil:  
  A System Dynamics Approach  
 Villela, Paulo (2020) paulo.villela@engenharia.ufjf.br  This model is based on  Crokidakis, Nuno . (2020).  Data analysis and modeling of the evolution of COVID-19 in Brazil . For more details see full paper  here .
Evolution of Covid-19 in Brazil:
A System Dynamics Approach

Villela, Paulo (2020)
paulo.villela@engenharia.ufjf.br

This model is based on Crokidakis, Nuno. (2020). Data analysis and modeling of the evolution of COVID-19 in Brazil. For more details see full paper here.

Initial data from: Italian data [ link ], as of Mar 28  Incubation estimation [ link ]      Model focuses on outbreak dynamics and control, this version ignores symptom onset to hospital admission and the rest of recovery dynamics.
Initial data from:
Italian data [link], as of Mar 28
Incubation estimation [link

Model focuses on outbreak dynamics and control, this version ignores symptom onset to hospital admission and the rest of recovery dynamics.
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

 Modelo epidemiológico simples   SIR: Susceptíveis - Infectados - Recuperados         Clique aqui  para ver um vídeo com a apresentação sobre a construção e uso deste modelo.  É recomendável ver o vídeo num computador de mesa para se poder ver os detalhes do modelo.          Dados iniciais de  infec
Modelo epidemiológico simples
SIR: Susceptíveis - Infectados - Recuperados

Clique aqui para ver um vídeo com a apresentação sobre a construção e uso deste modelo.  É recomendável ver o vídeo num computador de mesa para se poder ver os detalhes do modelo.


Dados iniciais de infectados, recuperados e óbitos para diversos países (incluindo o Brasil) podem ser obtidos aqui neste site.
 This System Model presents the cases of COVID-19 in Puerto Princesa City as of June 3, 2021     Insight Author: Rojean R. Rosales
This System Model presents the cases of COVID-19 in Puerto Princesa City as of June 3, 2021

Insight Author: Rojean R. Rosales
 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
  COVID-19 outbreak in Burnie Tasmania Simulation Model         Introduction        This model simulates how COVID-19 outbreak in Burnie and how the government responses influence the economic community.  Government responses are based on the reported COVID-19 cases amount, whcih is considered to be
COVID-19 outbreak in Burnie Tasmania Simulation Model

Introduction

This model simulates how COVID-19 outbreak in Burnie and how the government responses influence the economic community.  Government responses are based on the reported COVID-19 cases amount, whcih is considered to be based on testing rate times number of people who are infected minus those recovered from COVID-19 and dead.
Government interventions include the implement of healthy policy, border surveillance, quarantine and travel restriction. After outbreak, economic activities are positively affected by the ecommerce channel development and normal economic grwoth, while the unemployement rate unfortunately increases as well. 

Assumption
  • Enforcing government policies reduce both infection and economica growth.                                                                                                         
  • When there are 10 or greater COVID-19 cases reported, the governmwnt policies are triggered.                                                          
  • Greater COVID-19 cases have negatively influenced the economic activities.                                                                                             
  • Government policies restict people's activities socially and economically, leading to negative effects on economy.                                          
  • Opportunities for jobs are cut down too, making umemployment rate increased.                                                                                   
  • During the outbreak period, ecommerce has increased accordingly because people are restricted from going out.                                  
Interesting insights

An increase in vaccination rate will make difference on reduing the infection. People who get vaccinated are seen to have higher immunity index to fight with COVID-19. Further research is needed.

Testing rate is considered as critical issue to reflect the necessity of government intervention. Higher testing rate seems to boost immediate intervention. Reinforced policies can then reduce the spread of coronvirus but absoluately have negative impacts on economy too.