Initial data from: Italian data [ link ], as of Mar 28  Incubation estimation [ link ]      Model focuses on outbreak dynamics and control, this version ignores symptom onset to hospital admission and the rest of recovery dynamics.
Initial data from:
Italian data [link], as of Mar 28
Incubation estimation [link

Model focuses on outbreak dynamics and control, this version ignores symptom onset to hospital admission and the rest of recovery dynamics.
 Modelo epidemiológico simples   SIR: Susceptíveis - Infectados - Recuperados         Clique aqui  para ver um vídeo com a apresentação sobre a construção e uso deste modelo.  É recomendável ver o vídeo num computador de mesa para se poder ver os detalhes do modelo.          Dados iniciais de  infec
Modelo epidemiológico simples
SIR: Susceptíveis - Infectados - Recuperados

Clique aqui para ver um vídeo com a apresentação sobre a construção e uso deste modelo.  É recomendável ver o vídeo num computador de mesa para se poder ver os detalhes do modelo.


Dados iniciais de infectados, recuperados e óbitos para diversos países (incluindo o Brasil) podem ser obtidos aqui neste site.
 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
Simulation einer Pandemie (Corona) am Beispiel der Bevölkerungssituation in Hamburg (1,9mio Einwohner, variabel)
Simulation einer Pandemie (Corona) am Beispiel der Bevölkerungssituation in Hamburg (1,9mio Einwohner, variabel)
     Model introduction    This is an SIR model that simulates the potential COVID outbreak that can happen in Burnie, Tasmania after the positive case reported on October 2nd 2021, which incorporates three parts: Susceptible – Infectious – Recovered Looping model, government’s health policy that wi

Model introduction 

This is an SIR model that simulates the potential COVID outbreak that can happen in Burnie, Tasmania after the positive case reported on October 2nd 2021, which incorporates three parts: Susceptible – Infectious – Recovered Looping model, government’s health policy that will affect each phase of the SIR process, and the potential economy that will affect people’s behaviours and thus influence the effectiveness of government’s public policy. 

 

For instance, the values of variables deciding the inflection rate are influenced by actions taken to control the situation, such as through the quarantine of those infected, social distancing, travel bans, and personal isolation and protection strategies. Conversely, the magnitude of the problem at various points in time will also influence the magnitude of the response to control the situation. 

 

Assumptions

1. The population is assumed to be homogeneous and well-mixed. And there is no significant change on the total population due to births and deaths.

2. Once lockdown is lifted, no further imported cases are assumed to occur.

3. Super spreader events are not explicitly considered. 

4. The interaction among states is assumed to be implicit. 

5. All confirmed cases would go to quarantine, and 90% of their contacts can be traced.

6. Contact tracing and testing capacity is sufficient.


Insights

Ideally, both one-way scenario analysis and two-way scenario analysis (amount change in one/two variables each time) will be conducted to find out the variable that has the greatest impact on getting new cases. Insights below can be gained:

 

1.What happens if people are more/less likely to pass on infection, through washing their hands and sneeze into their elbows (infection rate affected by people’s behaviours that will further induced by government’s policies)

2. How vaccination rate will affect the development of positive cases 

3. What if the structure of the contact network changes (extent to which school, workplace and restaurants is shut down) 

4. How growth rate is sensitive to the duration of illness and probability of infection

  INTRODUCTION
  

  COVID-19  

 Coronavirus which was named COVID-19 is a
respiratory disease which affects the lungs of the infected person and thus
making such people vulnerable to other diseases such as pneumonia. It was first
discovered in Wuhan China in December 2019 and since then has spread

INTRODUCTION

COVID-19

Coronavirus which was named COVID-19 is a respiratory disease which affects the lungs of the infected person and thus making such people vulnerable to other diseases such as pneumonia. It was first discovered in Wuhan China in December 2019 and since then has spread across the world affecting more than 40 million people from which over one million have died.

In the early discovery of the COVID-19, there were measures that were put in place with the help World Health Organization (WHO). They recommended a social distance of 1.5 meters to 2 meters to curb the spread since the scientist warned that COVID-19 can be carried in the droplets when someone breathes or cough. Another measure which was advised by WHO was wearing of mask, especially when people are in group. Wearing of mask would ensure that someone’s droplets do not leave their mouth or nose when they breathe or cough. It also help one from breathing in the virus which believed to be contagious and airborne.

The World Health Organization also advised on washing of the hand and avoiding frequent touching of the face. People mostly use their hand to touch surfaces which mad their hand the greatest harbor of the disease. Therefore, washing hands with soap will kill and wash away the virus from the hands. Avoiding touching of face also will prevent people from contracting the disease since the virus is believed to enter the body through openings such as eye, nose and mouth.

Another measure as a precaution from contracting the disease was to avoid hand shaking, hugging, kissing and any other thing which would bring people together. These were measures put to ensure that COVID-19 do not move from one person to another because of its airborne nature and the fact that it can be carried from the mouth or nose droplets.

Healthcare workers, in most of the countries, were provided with Personal Protective Equipment (PPEs) which helped them to protect themselves from contracting the virus. Healthcare workers were at the forefront in combating the disease since they were the people receiving the sick, including the ones with the virus. This exposed them to COVID-19 more than anyone hence more care was needed for them. Their PPEs comprised of white overall covering the whole body from head to toes. It also includes face mask and googles worn to prevent anything getting in their eyes. Their hands also were covered with gloves which were removed occasionally to avoid concentration of the virus on one glove.

COVID-19 affected many economies across the world as it greatly affected the human economic activities across the world. Due to the nature and how it spread, COVID-19 lead many countries to lockdown the country as we know it. Travelling was stopped as many countries feared the surge of the virus due to many people travelling form the countries which are already greatly affected. Another reason which travelling was hampered was due to the fact that the virus could spread among the travelers in an airplane. There were no proper measures to ensure social distance in the airplane and many people feared travelling from fear of contracting the disease.

This greatly affected the economy of many countries including great economies like USA. Tourism industry was the one affected the most as many country mostly depend on foreign travelers as their tourist. Many countries do not have proper domestic tourism structure and therefore depend on visitors who travels from foreign countries. Such countries have their economies greatly affected since the earnings from tourism either gone down or was not there at all.

Apart from locking down the country from foreigners, many major cities across the world were under lockdown. This means that even the citizens of the country were neither allowed in or out of the city. This restricted movement of people affecting greatly the human economic activities as many businesses were closed down especially transport businesses. The movement of goods from one places to another was affected making business difficult to carry out. Many people who dealt in perishable agricultural products count losses as their farm produced were destroyed because of lack of wider market. Some countries banned some businesses such as importing second hand clothes since it was believed that they could harbor the virus. Most of the meeting places such as sporting events and pubs were closed down affecting greatly the people who were involved in such businesses.

Across the world, schools were closed. Schools contain students in large numbers which could affect many students across the world. Learning was temporary stopped as different countries were finding ways of curbing the virus.

Scientist are busy like bees across the world to find the vaccine for the diseases that have ravage many countries and above all, they are trying to find the cure. Many countries have carried out their trial of vaccines with the hope to find an effective vaccine for the virus.

Meanwhile it is necessary to find ways by which the virus can be controlled so that it doesn’t spread to a point where it come out of control. Some of the measures put by the WHO has been highlighted above, but these measures need to be studied to ensure that measures which are more effective are affected at great heights. I therefore, have created a model in Insight Maker to check how these measures prove their effectiveness over time.

 Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

     Model introduction    This is an SIR model that simulates the potential COVID outbreak that can happen in Burnie, Tasmania after the positive case reported on October 2nd 2021, which incorporates three parts: Susceptible – Infectious – Recovered Looping model, government’s health policy that wi

Model introduction 

This is an SIR model that simulates the potential COVID outbreak that can happen in Burnie, Tasmania after the positive case reported on October 2nd 2021, which incorporates three parts: Susceptible – Infectious – Recovered Looping model, government’s health policy that will affect each phase of the SIR process, and the potential economy that will affect people’s behaviours and thus influence the effectiveness of government’s public policy. 

 

For instance, the values of variables deciding the inflection rate are influenced by actions taken to control the situation, such as through the quarantine of those infected, social distancing, travel bans, and personal isolation and protection strategies. Conversely, the magnitude of the problem at various points in time will also influence the magnitude of the response to control the situation. 

 

Assumptions

1. The population is assumed to be homogeneous and well-mixed. And there is no significant change on the total population due to births and deaths.

2. Once lockdown is lifted, no further imported cases are assumed to occur.

3. Super spreader events are not explicitly considered. 

4. The interaction among states is assumed to be implicit. 

5. All confirmed cases would go to quarantine, and 90% of their contacts can be traced.

6. Contact tracing and testing capacity is sufficient.


Insights

Ideally, both one-way scenario analysis and two-way scenario analysis (amount change in one/two variables each time) will be conducted to find out the variable that has the greatest impact on getting new cases. Insights below can be gained:

 

1.What happens if people are more/less likely to pass on infection, through washing their hands and sneeze into their elbows (infection rate affected by people’s behaviours that will further induced by government’s policies)

2. How vaccination rate will affect the development of positive cases 

3. What if the structure of the contact network changes (extent to which school, workplace and restaurants is shut down) 

4. How growth rate is sensitive to the duration of illness and probability of infection

 Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

 Aquí tenemos un modelo SEIR básico e investigaremos qué cambios serían apropiados para modelar el Coronavirus 2019

Aquí tenemos un modelo SEIR básico e investigaremos qué cambios serían apropiados para modelar el Coronavirus 2019

 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
 Modelo epidemiológico simples   SIR: Susceptíveis - Infectados - Recuperados        Dados iniciais do Brasil em 04 Abr 2020    Fonte:   https://www.worldometers.info/coronavirus/country/brazil/
Modelo epidemiológico simples
SIR: Susceptíveis - Infectados - Recuperados

Dados iniciais do Brasil em 04 Abr 2020
 Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

 If no attempt is made to eradicate SARS-CoV-2 it will eventually
become endemic, ineradicable, at a high never-ending cost to world in terms of economic
growth, human health and lives. The current strategy adopted by most
governments is to impose  restrictive
measures when the virus threatens to ov

If no attempt is made to eradicate SARS-CoV-2 it will eventually become endemic, ineradicable, at a high never-ending cost to world in terms of economic growth, human health and lives. The current strategy adopted by most governments is to impose  restrictive measures when the virus threatens to overwhelm hospital services and to relax these restrictions as this danger recedes. This is short-sighted. It cannot eliminate the highly infectious delta variant, which has an estimated R0-value of between 6 & 9. Periodic lockdowns will be hard to avoid in the future.

However, eradication is possible, herd immunity can be achieved quickly worldwide, reducing the R0 permanently to below 1, which will lead to the disappearance of the virus. Critical in achieving this is Ivermectin, a medicine that is cheap,  readily available and can be manufactured by most countries. A recent meta study has shown that Ivermectin, prophylactically employed, can prevent infection with the virus  by 86 % on average – very similar to the efficacy of vaccines. Eradication will require employment of all the instruments shown in the graph: future generations do not have to live with this plague. 

 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
 This is the second in a series of models that explore the dynamics of and policy impacts on infectious diseases. This basic SIR model explores the impact of a simple test and isolate policy. The first model can be found  here .
This is the second in a series of models that explore the dynamics of and policy impacts on infectious diseases. This basic SIR model explores the impact of a simple test and isolate policy. The first model can be found here.

COVID-19 Outbreak in Burnie Tasmania Simulation Model    Introduction:     This model simulates the COVID-19 outbreak situation in Burnie and how the government responses impact local economy. The COVID-19 pandemic spread is influenced by several factors including infection rate, recovery rate, deat
COVID-19 Outbreak in Burnie Tasmania Simulation Model

Introduction:

This model simulates the COVID-19 outbreak situation in Burnie and how the government responses impact local economy. The COVID-19 pandemic spread is influenced by several factors including infection rate, recovery rate, death rate and government's intervention policies.Government's policies reduce the infection spread and also impact economic activities in Burnie, especially its tourism and local businesses.   

Assumptions: 

- This model was built based on different rates, including infection rate, recovery rate, death rate, testing rate and economic growth rate. There can be difference between 
this model and reality.

- This model considers tourism and local business are the main industries influencing local economy in Burnie.

- Government's intervention policies will positive influence on local COVID-19 spread but also negative impact on local economic activity.

- When there are more than 10 COVID-19 cases confirmed, the government policies will be triggered, which will brings effects both restricting the virus spread and reducing local economic growth.

- Greater COVID-19 cases will negatively influence local economic activities.

Interesting Insights:

Government's vaccination policy will make a important difference on restricting the infection spread. When vaccination rate increase, the number of deaths, infected people and susceptible people all decrease. This may show the importance of the role of government's vaccination policy.

When confirmed cases is more than 10, government's intervention policies are effective on reducing the infections, meanwhile local economic activities will be reduced.

Collapse of the economy, not just recession, is now very likely. To give just one possible cause,
in the U.S. the fracking industry is in deep trouble. It is not only that most
fracking companies have never achieved a   free cash flow   (made a profit)
since the fracking boom started in 2008, but th
Collapse of the economy, not just recession, is now very likely. To give just one possible cause, in the U.S. the fracking industry is in deep trouble. It is not only that most fracking companies have never achieved a free cash flow (made a profit) since the fracking boom started in 2008, but that  an already very weak  and unprofitable oil industry cannot cope with extremely low oil prices. The result will be the imminent collapse of the industry. However, when the fracking industry collapses in the US, so will the American economy – and by extension, probably, the rest of the world economy. To grasp a second and far more serious threat it is vital to understand the phenomenon of ‘Global Dimming’. Industrial activity not only produces greenhouse gases, but emits also sulphur dioxide which converts to reflective sulphate aerosols in the atmosphere. Sulphate aerosols act like little mirrors that reflect sunlight back into space, cooling the atmosphere. But when economic activity stops, these aerosols (unlike carbon dioxide) drop out of the atmosphere, adding perhaps as much as 1° C to global average temperatures. This can happen in a very short period time, and when it does mankind will be bereft of any means to mitigate the furious onslaught of an out-of-control and merciless climate. The data and the unrelenting dynamic of the viral pandemic paint bleak picture.  As events unfold in the next few months,  we may discover that it is too late to act,  that our reign on this planet has, indeed,  come to an abrupt end?