Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

This model shows the COVID-19 outbreaks in Burnie and the Government intervention to alleviate the crisis and also how is the intervention affect the economy.    It is assumed that the Government intervention is triggered when the COVID-19 case is equal to or more than 10.      Government interventi
This model shows the COVID-19 outbreaks in Burnie and the Government intervention to alleviate the crisis and also how is the intervention affect the economy.

It is assumed that the Government intervention is triggered when the COVID-19 case is equal to or more than 10. 

Government intervention - lock down the state, suppress the development of COVID-19 effectively. It is related to most of people stay at home to reduce the exposure in public area.
On the other hand, it also bring the economy of Burnie in the recession, as no tourists, no dining out activities and decrease in money spending in the city.
This model is comparing healthy and sick residents in Burnie, Tasmania after the Covid-19 Outbreak in 2020. It will also show how the Burnie economy is effected by the disease, how the Government Health Policies are implemented and how they are enforced.  This model is based on the SIR, Susceptible,
This model is comparing healthy and sick residents in Burnie, Tasmania after the Covid-19 Outbreak in 2020. It will also show how the Burnie economy is effected by the disease, how the Government Health Policies are implemented and how they are enforced.

This model is based on the SIR, Susceptible, Infection, Recovery (or Removed) These are the three possible states related to the members of the Burnie population when a contagious decease spreads.

The Government/Government Health Policy, played a big part in the successful decrease in Covid-19 infections. The Government enforced the following.
- No travel (interstate or international)
- Isolation within the residents homes
- Social distancing by 1.5m
- Quarantine
- Non essential companies to be temporarily closed
- Limitations on public gatherings
- And limits on time and kilometers aloud to travel from ones home within a local community

This resulted in lower reported infection rates of Covid-19 and higher recovery rates.

In my opinion:
When the first case was reported the Government could have been even faster to enforce these rules to decrease the fatality rates further for the Burnie, population.  

Assumption: Government policies were only triggered when 10 cases were recorded.
Also, more cases that had been recorded effected the economic growth during this time.

Interesting Findings: In the simulation it shows as the death rates increases towards the end of the week, the rate of testing goes down. You would think that the government would have enforced a higher testing rate over the duration of this time to decrease the number of infections, exposed which would increase the recovery rates faster and more efficiently.  

Figures have been determined by the population of Burnie being 19,380 at the time of assignment.

This model is developed to simulate how Burnie can deal with a new outbreak of COVID-19 considering health and economic outcomes. The time limit of the simulation is 100 days when a stable circumstance is reached.      Stocks   There are four stocks involved in this model. Susceptible represents the
This model is developed to simulate how Burnie can deal with a new outbreak of COVID-19 considering health and economic outcomes. The time limit of the simulation is 100 days when a stable circumstance is reached. 

Stocks
There are four stocks involved in this model. Susceptible represents the number of people that potentially could be infected. Infected refers to the number of people infected at the moment. Recovered means the number of people that has been cured, but it could turn into susceptible given a specific period of time since the immunity does not seem everlasting. Death case refers to the total number of death since the beginning of outbreak. The sum of these four stocks add up to the initial population of the town.

Variables
There are four variables in grey colour that indicate rates or factors of infection, recovery, death or economic outcomes. They usually cannot be accurately identified until it happen, therefore they can be modified by the user to adjust for a better simulation outcome.

Immunity loss rate seems to be less relevant in this case because it is usually unsure and varies for individuals, therefore it is fixed in this model.

The most interesting variable in green represents the government policy, which in this situation should be shifting the financial resources to medical resources to control infection rate, reduce death rate and increase recovery rate. It is limited from 0 to 0.8 since a government cannot shift all of the resources. Bigger scale means more resources are shifted. The change of government policy will be well reflected in the economic outcome, users are encouraged to adjust it to see the change.

The economic outcome is the variable that roughly reflects the daily income of the whole town, which cannot be accurate but it does indicate the trend.

Assumptions:
The recovery of the infected won't happen until 30 days later since it is usually a long process. And the start of death will be delayed for 14 days considering the characteristic of the virus.
Economic outcome will be affected by the number of infected since the infected cannot normally perform financial activities.
Immunity effect is fixed at 30 days after recovery.

Interesting Insights:
 In this model it is not hard to find that extreme government policy does not result in the best economic outcome, but the values in-between around 0.5 seems to reach the best financial outcome while the health issues are not compromised. That is why usually the government need to balance health and economic according to the circumstance. 
 

 Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

An SD model formulated to present the trend of COVID-19 infection and death rate at Puerto Princesa City, PALAWAN using the CESU-PPC file last June 3, 2021.
An SD model formulated to present the trend of COVID-19 infection and death rate at Puerto Princesa City, PALAWAN using the CESU-PPC file last June 3, 2021.
This model demonstrates the relationship between the covid-19 outbreak, government policy, and economic impacts. This model was developed based on SIR model (Susceptible, Infection, Recovery). The model also outlines the policies been implemented by the government to cope with Covid-19 pandemic and
This model demonstrates the relationship between the covid-19 outbreak, government policy, and economic impacts. This model was developed based on SIR model (Susceptible, Infection, Recovery). The model also outlines the policies been implemented by the government to cope with Covid-19 pandemic and it also indicate its economic impact. 
Interesting insights
This model indicates the government policies have had positive influence on economic impact and it reduce its negative effects on the economy.
 Model of Covid-19 outbreak in Burnie, Tasmania     Balancing Health and Economy factor Vaccination rate will help to recovered more people and decrease the immunity loss rate.        Additionally. The lack of food during the covid-19 pandemic still an obstacle for economic development.     In somew
Model of Covid-19 outbreak in Burnie, Tasmania

Balancing Health and Economy factor
Vaccination rate will help to recovered more people and decrease the immunity loss rate.


Additionally. The lack of food during the covid-19 pandemic still an obstacle for economic development.

In someway, Health balancing in every people will help to shut down covid-19 and help economic development even grow up faster.


 Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

 If no attempt is made to eradicate SARS-CoV-2 it will eventually
become endemic, ineradicable, at a high never-ending cost to world in terms of economic
growth, human health and lives. The current strategy adopted by most
governments is to impose  restrictive
measures when the virus threatens to ov

If no attempt is made to eradicate SARS-CoV-2 it will eventually become endemic, ineradicable, at a high never-ending cost to world in terms of economic growth, human health and lives. The current strategy adopted by most governments is to impose  restrictive measures when the virus threatens to overwhelm hospital services and to relax these restrictions as this danger recedes. This is short-sighted. It cannot eliminate the highly infectious delta variant, which has an estimated R0-value of between 6 & 9. Periodic lockdowns will be hard to avoid in the future.

However, eradication is possible, herd immunity can be achieved quickly worldwide, reducing the R0 permanently to below 1, which will lead to the disappearance of the virus. Critical in achieving this is Ivermectin, a medicine that is cheap,  readily available and can be manufactured by most countries. A recent meta study has shown that Ivermectin, prophylactically employed, can prevent infection with the virus  by 86 % on average – very similar to the efficacy of vaccines. Eradication will require employment of all the instruments shown in the graph: future generations do not have to live with this plague. 

  Overview:
  

 The
COVID-19 Outbreak in Burnie Tasmania shows the process of COVID-19 outbreak,
the impacts of government policy on both the COVID-19 outbreak and the GDP
growth in Burnie.  

  Assumptions:  

 We set some
variables at fix rates, including the immunity loss rate, recovery rate, de

Overview:

The COVID-19 Outbreak in Burnie Tasmania shows the process of COVID-19 outbreak, the impacts of government policy on both the COVID-19 outbreak and the GDP growth in Burnie.

Assumptions:

We set some variables at fix rates, including the immunity loss rate, recovery rate, death rate, infection rate and case impact rate, as they usually depend on the individual health conditions and social activities.

It should be noticed that we set the rate of recovery, which is 0.7, is higher than that of immunity loss rate, which is 0.5, so, the number of susceptible could be reduced over time.

Adjustments: (please compare the numbers at week 52)

Step 1: Set all the variables at minimum values and simulate

results: Number of Infected – 135; Recovered – 218; Cases – 597; Death – 18,175; GDP – 10,879.

Step 2: Increase the variables of Health Policy, Quarantine, and Travel Restriction to 0.03, others keep the same as step 1, and simulate

results: Number of Infected – 166 (up); Recovered – 249 (up); Cases – 554 (down); Death – 18,077 (down); GDP – 824 (down).

So, the increase of health policy, quarantine and travel restriction will help increase recovery, decrease confirmed cases, decrease death, but also decrease GDP.

Step 3: Increase the variables of Testing Rate to 0.4, others keep the same as step 2, and simulate

results: Number of Infected – 152 (down); Recovered – 243 (down); Cases – 1022 (up); Death – 17,625 (down); GDP – 824 (same).

So, the increase of testing rate will help to increase the confirmed cases.

Step 4: Change GDP Growth Rate to 0.14, Tourism Growth Rate to 0.02, others keep the same as step 3, and simulate

results: Number of Infected – 152 (same); Recovered – 243 (same); Cases – 1022 (same); Death – 17,625 (same); GDP – 6,632 (up).

So, the increase of GDP growth rate and tourism growth rate will helps to improve the GDP in Burnie.

The System Dynamics Model presents the the COVID-19 status in Germany
The System Dynamics Model presents the the COVID-19 status in Germany
5 months ago
 Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

O presente  Insight  engloba diversos tipos de modelos compartimentais. Pra visualizar alguns deles, procure testar os seguintes valores: SI: S=995, I=5, β=0.1 SIS: S=980, I=20, β=0.1 e δ = 0.01 SIR: S=995, I=5, β=0.35 e γ=0.035 SIRS: S=995, I=5, β=0.4, γ=0.2 e μ=0.005 SEIR: S=995, I=5, β=0.5, ω=0.1
O presente Insight engloba diversos tipos de modelos compartimentais.
Pra visualizar alguns deles, procure testar os seguintes valores:
SI: S=995, I=5, β=0.1
SIS: S=980, I=20, β=0.1 e δ = 0.01
SIR: S=995, I=5, β=0.35 e γ=0.035
SIRS: S=995, I=5, β=0.4, γ=0.2 e μ=0.005
SEIR: S=995, I=5, β=0.5, ω=0.1 e γ=0.1
SEIRS: S=995, I=5, β=0.5, ω=0.1, γ=0.1 e μ=0.03.
SIRV:  S=995, I=5, β=0.35, γ=0.035 e ν=0.01

Note que este é um Insight que pode ser modificado para mostrar cada um desses modelos e o usuário deverá tornar alguns fluxo nulos afim de manter apenas as conexões essenciais para cada sistema.
  LEIA ANTES DE COMEÇAR   Milhões de pessoas ao redor do mundo estão em QUARENTENA em função da pandemia COVID-19. Se adaptar à quarentena pode ser um PROBLEMA para muitas pessoas.   Nosso DESAFIO é construir um DIAGRAMA CAUSAL que analise este PROBLEMA que é ficar em quarentena. Vamos lá!?       PR

LEIA ANTES DE COMEÇAR

Milhões de pessoas ao redor do mundo estão em QUARENTENA em função da pandemia COVID-19. Se adaptar à quarentena pode ser um PROBLEMA para muitas pessoas.

Nosso DESAFIO é construir um DIAGRAMA CAUSAL que analise este PROBLEMA que é ficar em quarentena. Vamos lá!?


PRIMEIRA TAREFA (até dia 13 de maio)

1) Qual a variável CHAVE que você acha que pode definir o problema? Crie uma VARIÁVEL dentro do folder CHAVE.

2) Quais as outras variáveis SECUNDÁRIAS que estão relacionadas com este problema? Crie variáveis secundárias dentro dos FOLDER que melhor identifica o tipo da variável.


SEGUNDA TAREFA

No dia 15 de maio discutiremos virtualmente no Zoom, as variáveis propostas e faremos um DIAGRAMA CAUSAL RASCUNHO.


TERCEIRA TAREFA

No dia 22 de maio discutiremos virtualmente Zoom, o DIAGRAMA CAUSAL RASCUNHO objetivando construir o DIAGRAMA CAUSAL DEFINITIVO.

 Modelo epidemiológico simples   SIR: Susceptíveis - Infectados - Recuperados        Dados iniciais do Brasil em 04 Abr 2020    Fonte:   https://www.worldometers.info/coronavirus/country/brazil/
Modelo epidemiológico simples
SIR: Susceptíveis - Infectados - Recuperados

Dados iniciais do Brasil em 04 Abr 2020
Model ini dirancang untuk membuat model tentang penyebaran Covid-19 dan vaksinasi di Kabupaten Sleman pada November 2022     Model ini dibuat untuk memenuhi tugas kelompok dari matakuliah Metode Penyelesaian Masalah dan Pemodelan, atas nama :   Sabilla Halimatus Mahmud   Nurul Widyastuti Muhammad Na
Model ini dirancang untuk membuat model tentang penyebaran Covid-19 dan vaksinasi di Kabupaten Sleman pada November 2022

Model ini dibuat untuk memenuhi tugas kelompok dari matakuliah Metode Penyelesaian Masalah dan Pemodelan, atas nama :
Sabilla Halimatus Mahmud
Nurul Widyastuti
Muhammad Najib



 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
   Explanation of the Model    This is a Model of COVID-19 outbreak in Burnie, Tasmania which shows the government actions in response to the pandemic COVID-19 and its affects on the Economy. The government health policy changes depending on the reported cases, which is a dependent upon the testing
Explanation of the Model
This is a Model of COVID-19 outbreak in Burnie, Tasmania which shows the government actions in response to the pandemic COVID-19 and its affects on the Economy. The government health policy changes depending on the reported cases, which is a dependent upon the testing rate. 

Assumptions
Lockdown and travel ban were the main factor in government policy. It negatively impacts on the Economic growth as individuals are not going out which is directly affects the business around the world, in this insight 'Burnie'. This reduces the economic growth and the factors positively effecting economic growth such as Tourism.

Government policies has a negative impact on Exposer of individuals. Moreover, it also has a negative impact on chances of infection when exposed as well as other general infection rate.
 

Interesting Insight 
There is a significant impact of test rating on COVID-19 outbreak. Higher rates increases the government involvement, which decreases cases as well as the total death. 
In contrast, lower testing rates increase the death rate and cases. 

Tourism which plays a avital role in Tasmanian Economy greatly affects the Economic Growth. The decline of Tourism in parts of Tasmania such as Burnie, would directly decrease the economy of Tasmania.