Evolutionary Accretion Model of Human Memory mostly from Murray 2016/7  Book  and 2019 Ferbinteanu Memory Theory  article  See also Brain systems modelling 2021  article
Evolutionary Accretion Model of Human Memory mostly from Murray 2016/7 Book and 2019 Ferbinteanu Memory Theory article See also Brain systems modelling 2021 article
    Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system.  For some time modelers have been particularly int

Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system.  For some time modelers have been particularly interested in internal interactions that result in stable oscillations in the absence of any external forces acting on a system.  The model in this last scenario was independently developed by Alfred Lotka (1924) and Vito Volterra (1926).  Lotka was interested in understanding internal dynamics that might explain oscillations in moth and butterfly populations and the parasitoids that attack them.  Volterra was interested in explaining an increase in coastal populations of predatory fish and a decrease in their prey that was observed during World War I when human fishing pressures on the predator species declined.  Both discovered that a relatively simple model is capable of producing the cyclical behaviors they observed.  Since that time, several researchers have been able to reproduce the modeling dynamics in simple experimental systems consisting of only predators and prey.  It is now generally recognized that the model world that Lotka and Volterra produced is too simple to explain the complexity of most and predator-prey dynamics in nature.  And yet, the model significantly advanced our understanding of the critical role of feedback in predator-prey interactions and in feeding relationships that result in community dynamics.The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

1. The prey population finds ample food at all times.
2. The food supply of the predator population depends entirely on the size of the prey population.
3. The rate of change of population is proportional to its size.
4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.
5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

Prey
When multiplied out, the prey equation becomes
dx/dtαx - βxy
 The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  - 

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.


stock flow diagram illustrating the lac operon
stock flow diagram illustrating the lac operon
Summary of evolution and the modern synthesis with genetics. See also the more recent extended synthesis  IM-2099
Summary of evolution and the modern synthesis with genetics. See also the more recent extended synthesis IM-2099
Un modello minimo per la crescita esponenziale di una popolazione microbica
Un modello minimo per la crescita esponenziale di una popolazione microbica
This is a simulation that represents the populations of lions in the world over the last 200 years.
This is a simulation that represents the populations of lions in the world over the last 200 years.
Een dynamisch model over een prooi predator relatie tussen verschillende populaties onder invloed van abiotische factoren.
Een dynamisch model over een prooi predator relatie tussen verschillende populaties onder invloed van abiotische factoren.
Un modello per l'effetto della temperatura (costante) sulla crescita di un pericoloso patogeno, agente di tossinfezioni alimentari (Listeria monocytogenes)    __  Il modello è basato su questo Insight https://insightmaker.com/insight/206861/D-model-curve-di-Richards-con-ln-alpha-lag-mu
Un modello per l'effetto della temperatura (costante) sulla crescita di un pericoloso patogeno, agente di tossinfezioni alimentari (Listeria monocytogenes)

__
Il modello è basato su questo Insight https://insightmaker.com/insight/206861/D-model-curve-di-Richards-con-ln-alpha-lag-mu
62 5 months ago
From Fig 12.2 p317 Pigliucci M and Muller GB (2010) Evolution: The Extended Synthesis
From Fig 12.2 p317 Pigliucci M and Muller GB (2010) Evolution: The Extended Synthesis
Small Intestine example from Progress in Biophysics & Molecular Biology Special Issue 2016 From the century of the genome to the century of the organism: New theoretical approaches  paper  on organization. Compare with Bogdanov
Small Intestine example from Progress in Biophysics & Molecular Biology Special Issue 2016 From the century of the genome to the century of the organism: New theoretical approaches paper on organization. Compare with Bogdanov
Een dynamisch model over een prooi predator relatie tussen verschillende populaties onder invloed van abiotische factoren.
Een dynamisch model over een prooi predator relatie tussen verschillende populaties onder invloed van abiotische factoren.
With this model, you can set Keq and initial concentrations of reactants and products,
With this model, you can set Keq and initial concentrations of reactants and products,
An attempt to model the allegation that over-consumption of calcium causes osteoporosis.
An attempt to model the allegation that over-consumption of calcium causes osteoporosis.
This model is a basic model on how the glucose level in blood is maintained.
This model is a basic model on how the glucose level in blood is maintained.