Insight diagram
A collaborative class project with each participant creating an animal/plant sub-model​ to explore the greater population/community dynamics of the Yellowstone ecosystem.
Clone of YellowstoneEcoClassModel
Insight diagram
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
Clone of BATHTUB MEAN TIME BETWEEN FAILURE (MTBF) RISK
Insight diagram
Shows the ecological impact of population.
Population Ecological Impact-Netherlands
Insight diagram
Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
Clone of Tiger Population and Black Market Value
Insight diagram
Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
Clone of Tiger Population and Black Market Value
Insight diagram
Een dynamisch model over een prooi predator relatie tussen verschillende populaties onder invloed van abiotische factoren.
Clone of Koein en Reuzenvogels en blumentjens Dio 5V prey predator
Insight diagram
The SEQ Koala Population over recent years has suffered due to a number of factors; habitat loss, predators, natural disasters, health issues and road fatalities to name a few.  All the while conservation efforts are being made to aid the population growth of  the national icon.

This insight draws together these contributing factors into a single population model (simulation).  This model begins with the known 2006 population and it projected based on current decline rates.  Accuracy is limited, however the downward trend is clearly evident.

Developed by Patrick O'Shaughnessy
Clone of SEQ Koala Population
Insight diagram
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
Clone of Z602 Population with four age groups
Insight diagram
Modelagem do estado psicológico de uma população. Inicialmente, todos os indivíduos estão no estado "Calmo". Com o passar do tempo e com as interações mútuas, há o surgimento e progressivo aumento do total de indivíduos com raiva (estado "Raivoso"). Deste estado e, com o passar do tempo, os indivíduos podem evoluir mentalmente e atingirem o estado "Indiferente", nos quais eles se tornam indiferentes à qualquer interação. Outra possibilidade é o indivíduo se enriquecer e, assim, atingir a felicidade (estado "Feliz").
Estado psicológico de uma população (DS)
Insight diagram
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
Clone of Z602 Population with four age groups
Insight diagram
EIGENE MODIFIKATIONEN
Clone of Miniwelt nach Bossel
Insight diagram
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
Clone of Z602 Population with four age groups
Insight diagram
This model is under construction, not at all ready, don't use it for any purposes (my suggestion ☺) yet.
Clone of adazhi under construction
Insight diagram

WIP from Eric Pruyt Netherlands

Societal Ageing
Insight diagram
Shows the ecological impact of population.
Clone of Population Ecological Impact- Ecuador
Insight diagram

The Logistic Map is a polynomial mapping (equivalently, recurrence relation) of degree 2, often cited as an archetypal example of how complex, chaotic behaviour can arise from very simple non-linear dynamical equations. The map was popularized in a seminal 1976 paper by the biologist Robert May, in part as a discrete-time demographic model analogous to the logistic equation first created by Pierre François Verhulst

Mathematically, the logistic map is written

where:

 is a number between zero and one, and represents the ratio of existing population to the maximum possible population at year n, and hence x0 represents the initial ratio of population to max. population (at year 0)r is a positive number, and represents a combined rate for reproduction and starvation. To generate a bifurcation diagram, set 'r base' to 2 and 'r ramp' to 1
To demonstrate sensitivity to initial conditions, try two runs with 'r base' set to 3 and 'Initial X' of 0.5 and 0.501, then look at first ~20 time steps

Clone of Clone of The Logistic Map
Insight diagram
UDB101 Assignment 1D

Koala Population Case Study

Sian Phillips

Clone of UDB101 Koala Population Case Study
Insight diagram
This is a population model designed for local health and care systems (United Kingdom). This model does not simulation male/female, but rather everyone in 5-year age groups.

Need to replace rates with converter holding rates over time.
Age-Sex Pop Model
Insight diagram
Show relation of birth and death rate over time, creating the elements of the demographic transition. This one is for Sweden. You can clone this insight for other nations, just plug in the new crude birth and death rates and find the starting population in 1960.
Clone of Demographic Transition-Sweden
Insight diagram
crescimento pop exponencial limitado
Insight diagram
A collaborative class project with each participant creating an animal/plant sub-model​ to explore the greater population/community dynamics of the Yellowstone ecosystem.
Clone of YellowstoneEcoClassModel
Insight diagram
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
Clone of Z602 Population with four age groups
Insight diagram

Clone of Bio103 Predator-Prey Model ("Lotka'Volterra")
Tags: Education, Chaos, Ecology, Biology, Population
Thanks to Insight Author: John Petersen

Edits by Andy Long

Everything that follows the dashes was created by John Petersen (or at least came from his Insight model). I just wanted to make a few comments.

We are looking at Hare and Lynx, of course. Clone this insight, and change the names.

Then read the text below, to get acquainted with one of the most important and well-known examples of a simple system of differential equations in all of mathematics.

http://www.nku.edu/~longa/classes/mat375/mathematica/Lotka-Volterra.nb
------------------------------------------------------------

Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system. 

For some time modelers have been particularly interested in internal interactions that result in stable oscillations in the absence of any external forces acting on a system. 

The model in this last scenario was independently developed by Alfred Lotka (1924) and Vito Volterra (1926).  Lotka was interested in understanding internal dynamics that might explain oscillations in moth and butterfly populations and the parasitoids that attack them.  Volterra was interested in explaining an increase in coastal populations of predatory fish and a decrease in their prey that was observed during World War I when human fishing pressures on the predator species declined. 

Both discovered that a relatively simple model is capable of producing the cyclical behaviors they observed. 

Since that time, several researchers have been able to reproduce the modeling dynamics in simple experimental systems consisting of only predators and prey.  It is now generally recognized that the model world that Lotka and Volterra produced is too simple to explain the complexity of most predator-prey dynamics in nature.  And yet, the model significantly advanced our understanding of the critical role of feedback in predator-prey interactions and in feeding relationships that result in community dynamics.

The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

1. The prey population finds ample food at all times.
2. The food supply of the predator population depends entirely on the size of the prey population.
3. The rate of change of population is proportional to its size.
4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.
5. Predators have limitless appetite.

As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

Prey
When multiplied out, the prey equation becomes
dx/dtαx - βxy
 The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  - 

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.


Clone of MAT375 Clone of Bio103 Predator-Prey Model ("Lotka'Volterra")