Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

  COVID-19 outbreak in Burnie Tasmania Simulation Model         Introduction        This model simulates how COVID-19 outbreak in Burnie and how the government responses influence the economic community.  Government responses are based on the reported COVID-19 cases amount, whcih is considered to be
COVID-19 outbreak in Burnie Tasmania Simulation Model

Introduction

This model simulates how COVID-19 outbreak in Burnie and how the government responses influence the economic community.  Government responses are based on the reported COVID-19 cases amount, whcih is considered to be based on testing rate times number of people who are infected minus those recovered from COVID-19 and dead.
Government interventions include the implement of healthy polcy, border surveillance, quarantine and travel restriction. After outbreak, economic activities are positively affected by the ecommerce channel development and normal economic grwoth, while the unemployement rate unfortunately increases as well. 

Assumption
  • Enforcing government policies reduce both infection and economica growth.                        
  • When there are 10 or greater COVID-19 cases reported, the governmwnt policies are triggered.                                                          
  • Greater COVID-19 cases have negatively influenced the economic activities.                    
  • Government policies restict people's activities socially and economically, leading to negative effects on economy.                                          
  • Opportunities for jobs are cut down too, making umemployment rate increased.           
  • During the outbreak period, ecommerce has increased accordingly because people are restricted from going out.                                  
Interesting insights

An increase in vaccination rate will make difference on reduing the infection. People who get vaccinated are seen to have higher immunity index to fight with COVID-19. Further research is needed.

Testing rate is considered as critical issue to reflect the necessity of government intervention. Higher testing rate seems to boost immediate intervention. Reinforced policies can then reduce the spread of coronvirus but absoluately have negative impacts on economy too.
 Introduction:  This model demonstrates the COVID-19 outbreak in Burnie, Tasmania. It shows how the government policy tries to reduce the spread of COVID-19 whilst also impacting the local economy.      Assumptions:   This model has four variables that influence the number of COVID-19 cases: infecti
Introduction:
This model demonstrates the COVID-19 outbreak in Burnie, Tasmania. It shows how the government policy tries to reduce the spread of COVID-19 whilst also impacting the local economy.

Assumptions:
This model has four variables that influence the number of COVID-19 cases: infection rate, immunity loss rate, recovery rate and death rate.

In order to reduce the pandemic spread, in this model, assume the government released six policies when Burnie COVID-19 cases are equal or over 10 cases. Policies are vaccination promotion, travel restriction to Burnie, quarantine, social distance, lockdown and testing rate.

Government policies would reduce the pandemic. However, it decreases economic growth at the same time. In this model, only list three variable that influence local economic activities. 
Travel restrictions and quarantine will reduce Burnie tourism and decrease the local economy. On the other hand, quarantine, social distance, lockdown allow people to stay at home, increasing E-commerce business.
As a result, policies that cause fewer COVID-19 cases also cause more considerable negative damage to the economy.

Interesting insights:
One of the interesting findings is that the government policy would reduce the COVID-19 spread significantly if I adjust the total government policies are over 20% (vaccine promotion, travel restriction, quarantine, social distance, lockdown), 3560 people will die, then no more people get COVID-19.
However, if I change the total government policy to less than 5%, the whole Burnie people will die according to the model. Therefore, we need to follow the polices, which saves our lives.
 Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

Simulation einer Pandemie (Corona) am Beispiel der Bevölkerungssituation in Hamburg (1,9mio Einwohner, variabel)
Simulation einer Pandemie (Corona) am Beispiel der Bevölkerungssituation in Hamburg (1,9mio Einwohner, variabel)
france data from: France data [ link ], as of April 30  Incubation estimation [ link ]      Model focuses on outbreak dynamics and control, this version ignores symptom onset to hospital admission and the rest of recovery dynamics.
france data from:
France data [link], as of April 30
Incubation estimation [link

Model focuses on outbreak dynamics and control, this version ignores symptom onset to hospital admission and the rest of recovery dynamics.
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.
 Model of Covid-19 outbreak in Burnie, Tasmania     Balancing Health and Economy factor Vaccination rate will help to recovered more people and decrease the immunity loss rate.        Additionally. The lack of food during the covid-19 pandemic still an obstacle for economic development.     In somew
Model of Covid-19 outbreak in Burnie, Tasmania

Balancing Health and Economy factor
Vaccination rate will help to recovered more people and decrease the immunity loss rate.


Additionally. The lack of food during the covid-19 pandemic still an obstacle for economic development.

In someway, Health balancing in every people will help to shut down covid-19 and help economic development even grow up faster.


     Model introduction    This is an SIR model that simulates the potential COVID outbreak that can happen in Burnie, Tasmania after the positive case reported on October 2nd 2021, which incorporates three parts: Susceptible – Infectious – Recovered Looping model, government’s health policy that wi

Model introduction 

This is an SIR model that simulates the potential COVID outbreak that can happen in Burnie, Tasmania after the positive case reported on October 2nd 2021, which incorporates three parts: Susceptible – Infectious – Recovered Looping model, government’s health policy that will affect each phase of the SIR process, and the potential economy that will affect people’s behaviours and thus influence the effectiveness of government’s public policy. 

 

For instance, the values of variables deciding the inflection rate are influenced by actions taken to control the situation, such as through the quarantine of those infected, social distancing, travel bans, and personal isolation and protection strategies. Conversely, the magnitude of the problem at various points in time will also influence the magnitude of the response to control the situation. 

 

Assumptions

1. The population is assumed to be homogeneous and well-mixed. And there is no significant change on the total population due to births and deaths.

2. Once lockdown is lifted, no further imported cases are assumed to occur.

3. Super spreader events are not explicitly considered. 

4. The interaction among states is assumed to be implicit. 

5. All confirmed cases would go to quarantine, and 90% of their contacts can be traced.

6. Contact tracing and testing capacity is sufficient.


Insights

Ideally, both one-way scenario analysis and two-way scenario analysis (amount change in one/two variables each time) will be conducted to find out the variable that has the greatest impact on getting new cases. Insights below can be gained:

 

1.What happens if people are more/less likely to pass on infection, through washing their hands and sneeze into their elbows (infection rate affected by people’s behaviours that will further induced by government’s policies)

2. How vaccination rate will affect the development of positive cases 

3. What if the structure of the contact network changes (extent to which school, workplace and restaurants is shut down) 

4. How growth rate is sensitive to the duration of illness and probability of infection

  COVID-19 outbreak model brief description        The model stimulated the COVID-19 outbreak at Burnie in Tasmania. The pandemic spread was driven by infection rate, death rate, recovery rate, and government policy.     The government policy reduces the infection in some way, but it also decreases
COVID-19 outbreak model brief description

The model stimulated the COVID-19 outbreak at Burnie in Tasmania. The pandemic spread was driven by infection rate, death rate, recovery rate, and government policy.

The government policy reduces the infection in some way, but it also decreases the physical industry. Online industry plays a vital role during the pandemic and brings more opportunities to the world economy. 

The vaccination directly reduces the infection rate. The national border will open as long as residents have been fully vaccinated. 

Assumption: 
The model was created based on different rates, including infection rate, death rate, testing rate and recovered rate. There will be difference between the real cases and the model. 

The model only list five elements of government policies embracing vaccination rate, national border and state border restrictions, public health orders, and business restrictions. Public health order includes social distance and residents should wear masks in high spread regions. 

This model only consider two industries which are physical industry, like manufacturer, retailers, or hospitality industries, and online industry. During the pandemic, employees star to work from home and students can have online class. Therefore, the model consider the COVID-19 has positive impact on online industry. 

Interesting insights:
The susceptible will decrease dramatically in first two weeks due to high infection rate and low recovery rate and government policy. After that, the number of susceptible will have a slight decline. 

The death toll and recovery rate was increased significantly in the first two weeks due to insufficient healthy response. And the trend will become mild as government policy works. 



 Simple epidemiological model for Burnie, Tasmania   SIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts           Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected
Simple epidemiological model for Burnie, Tasmania
SIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts  

Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected. So the government's policy is to reduce infections by increasing the number of people tested and starting early. At the same time, it has slowed the economic growth (which, according to the model,  will stop for next 52 weeks).
 Modelo epidemiológico simples   SIR: Susceptíveis - Infectados - Recuperados        Dados iniciais do Brasil em 04 Abr 2020    Fonte:   https://www.worldometers.info/coronavirus/country/brazil/
Modelo epidemiológico simples
SIR: Susceptíveis - Infectados - Recuperados

Dados iniciais do Brasil em 04 Abr 2020
 ==edited by Prasiantoro Tusono and Rio Swarawan Putra==     Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with a
==edited by Prasiantoro Tusono and Rio Swarawan Putra==

Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
This model is developed to simulate how Burnie can deal with a new outbreak of COVID-19 considering health and economic outcomes. The time limit of the simulation is 100 days when a stable circumstance is reached.      Stocks   There are four stocks involved in this model. Susceptible represents the
This model is developed to simulate how Burnie can deal with a new outbreak of COVID-19 considering health and economic outcomes. The time limit of the simulation is 100 days when a stable circumstance is reached. 

Stocks
There are four stocks involved in this model. Susceptible represents the number of people that potentially could be infected. Infected refers to the number of people infected at the moment. Recovered means the number of people that has been cured, but it could turn into susceptible given a specific period of time since the immunity does not seem everlasting. Death case refers to the total number of death since the beginning of outbreak. The sum of these four stocks add up to the initial population of the town.

Variables
There are four variables in grey colour that indicate rates or factors of infection, recovery, death or economic outcomes. They usually cannot be accurately identified until it happen, therefore they can be modified by the user to adjust for a better simulation outcome.

Immunity loss rate seems to be less relevant in this case because it is usually unsure and varies for individuals, therefore it is fixed in this model.

The most interesting variable in green represents the government policy, which in this situation should be shifting the financial resources to medical resources to control infection rate, reduce death rate and increase recovery rate. It is limited from 0 to 0.8 since a government cannot shift all of the resources. Bigger scale means more resources are shifted. The change of government policy will be well reflected in the economic outcome, users are encouraged to adjust it to see the change.

The economic outcome is the variable that roughly reflects the daily income of the whole town, which cannot be accurate but it does indicate the trend.

Assumptions:
The recovery of the infected won't happen until 30 days later since it is usually a long process. And the start of death will be delayed for 14 days considering the characteristic of the virus.
Economic outcome will be affected by the number of infected since the infected cannot normally perform financial activities.
Immunity effect is fixed at 30 days after recovery.

Interesting Insights:
 In this model it is not hard to find that extreme government policy does not result in the best economic outcome, but the values in-between around 0.5 seems to reach the best financial outcome while the health issues are not compromised. That is why usually the government need to balance health and economic according to the circumstance. 
 

Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.    Modified by Rio dan Pras
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.

Modified by Rio dan Pras
 Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

 This is the second in a series of models that explore the dynamics of and policy impacts on infectious diseases. This basic SIR model explores the impact of a simple test and isolate policy. The first model can be found  here .
This is the second in a series of models that explore the dynamics of and policy impacts on infectious diseases. This basic SIR model explores the impact of a simple test and isolate policy. The first model can be found here.

8 months ago
 Modelo epidemiológico simples   SIR: Susceptíveis - Infectados - Recuperados         Clique aqui  para ver um vídeo com a apresentação sobre a construção e uso deste modelo.  É recomendável ver o vídeo num computador de mesa para se poder ver os detalhes do modelo.          Dados iniciais de  infec
Modelo epidemiológico simples
SIR: Susceptíveis - Infectados - Recuperados

Clique aqui para ver um vídeo com a apresentação sobre a construção e uso deste modelo.  É recomendável ver o vídeo num computador de mesa para se poder ver os detalhes do modelo.


Dados iniciais de infectados, recuperados e óbitos para diversos países (incluindo o Brasil) podem ser obtidos aqui neste site.
 This is the third in a series of models that explore the dynamics of infectious diseases. This model looks at the impact of two types of suppression policies.      Press the simulate button to run the model with no policy.  Then explore what happens when you set up a lockdown and quarantining polic
This is the third in a series of models that explore the dynamics of infectious diseases. This model looks at the impact of two types of suppression policies. 

Press the simulate button to run the model with no policy.  Then explore what happens when you set up a lockdown and quarantining policy by changing the settings below.  First explore changing the start date with a policy duration of 60 days.
7 8 months ago
 Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

 Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.