ABOUT THE MODEL   This is a dynamic model that shows the correlation between the
health-related policies implemented by the Government in response to COVID-19 outbreak
in Burnie, Tasmania, and the policies’ impact on the Economic activity of the
area.   

   ASSUMPTIONS  

 The increase in the num

ABOUT THE MODEL

This is a dynamic model that shows the correlation between the health-related policies implemented by the Government in response to COVID-19 outbreak in Burnie, Tasmania, and the policies’ impact on the Economic activity of the area.

 ASSUMPTIONS

The increase in the number of COVID-19 cases is directly proportional to the increase in the Government policies in the infected region. The Government policies negatively impact the economy of Burnie, Tasmania.

INTERESTING INSIGHTS

1. When the borders are closed by the government, the economy is severely affected by the decrease of revenue generated by the Civil aviation/Migration rate. As the number of COVID-19 cases increase, the number of people allowed to enter Australian borders will also decrease by the government. 

2. The Economic activity sharply increases and stays in uniformity. 

3. The death rate drastically decreased as we increased test rate by 90%.


An SD model formulated to present the trend of COVID-19 infection and death rate at Puerto Princesa City, PALAWAN using the CESU-PPC file last June 3, 2021.
An SD model formulated to present the trend of COVID-19 infection and death rate at Puerto Princesa City, PALAWAN using the CESU-PPC file last June 3, 2021.
 Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

 Model of Covid-19 outbreak in Burnie, Tasmania     This model was designed from SIR model(susceptible, infected, revovered) to find out the effect of covid-19 outbreak into economic outcomes via government policy.     Assumptions     The government policy is triggered when number of infected is mor
Model of Covid-19 outbreak in Burnie, Tasmania

This model was designed from SIR model(susceptible, infected, revovered) to find out the effect of covid-19 outbreak into economic outcomes via government policy.

Assumptions

The government policy is triggered when number of infected is more than ten.

The government policies will take negative effect into Covid-19 outbreaks and financial system

Parameters

We set some fixed and adjusted variables.
Covid-19 outbreak's parameter
Fixed parameters: Infection rate, Background disease, recovery rate.
Adjusted parameter: Immunity loss rate can be change from vaccination rate.

Government policy's parameters
Adjusted parameters: Testing rate(from 0.15 to 0.95), vaccination rate(from 0.3 to 1), travel ban(from 0 to 0.9), social distancing(from 0.1 to 0.8), Quarantine(from 0.1 to 0.9)

Economic's parameters
Fixed parameter: Tourism
Adjusted parameter: Economic growth rate(from 0.3 to 0.5)

Interesting insight

Increase vaccination rate and testing rate will decrease the number amount of infected case and a little bit more negative effect to economic system. However economic system still need a long time to recover in both cases.
Initial data from: Italian data [ link ], as of Mar 28  Incubation estimation [ link ]      Model focuses on outbreak dynamics and control, this version ignores symptom onset to hospital admission and the rest of recovery dynamics.
Initial data from:
Italian data [link], as of Mar 28
Incubation estimation [link

Model focuses on outbreak dynamics and control, this version ignores symptom onset to hospital admission and the rest of recovery dynamics.
Model ini dirancang untuk membuat model tentang penyebaran Covid-19 dan vaksinasi di Kabupaten Sleman pada November 2022     Model ini dibuat untuk memenuhi tugas kelompok dari matakuliah Metode Penyelesaian Masalah dan Pemodelan, atas nama :   Sabilla Halimatus Mahmud   Nurul Widyastuti Muhammad Na
Model ini dirancang untuk membuat model tentang penyebaran Covid-19 dan vaksinasi di Kabupaten Sleman pada November 2022

Model ini dibuat untuk memenuhi tugas kelompok dari matakuliah Metode Penyelesaian Masalah dan Pemodelan, atas nama :
Sabilla Halimatus Mahmud
Nurul Widyastuti
Muhammad Najib



 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

 Model of Covid-19 outbreak in Burnie, Tasmania     Balancing Health and Economy factor Vaccination rate will help to recovered more people and decrease the immunity loss rate.        Additionally. The lack of food during the covid-19 pandemic still an obstacle for economic development.     In somew
Model of Covid-19 outbreak in Burnie, Tasmania

Balancing Health and Economy factor
Vaccination rate will help to recovered more people and decrease the immunity loss rate.


Additionally. The lack of food during the covid-19 pandemic still an obstacle for economic development.

In someway, Health balancing in every people will help to shut down covid-19 and help economic development even grow up faster.


 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
This model demonstrates the relationship between the covid-19 outbreak, government policy, and economic impacts. This model was developed based on SIR model (Susceptible, Infection, Recovery). The model also outlines the policies been implemented by the government to cope with Covid-19 pandemic and
This model demonstrates the relationship between the covid-19 outbreak, government policy, and economic impacts. This model was developed based on SIR model (Susceptible, Infection, Recovery). The model also outlines the policies been implemented by the government to cope with Covid-19 pandemic and it also indicate its economic impact. 
Interesting insights
This model indicates the government policies have had positive influence on economic impact and it reduce its negative effects on the economy.
 Modelo epidemiológico simples   SIR: Susceptíveis - Infectados - Recuperados        Dados iniciais do Brasil em 04 Abr 2020    Fonte:   https://www.worldometers.info/coronavirus/country/brazil/
Modelo epidemiológico simples
SIR: Susceptíveis - Infectados - Recuperados

Dados iniciais do Brasil em 04 Abr 2020
This model is developed to simulate how Burnie can deal with a new outbreak of COVID-19 considering health and economic outcomes. The time limit of the simulation is 100 days when a stable circumstance is reached.      Stocks   There are four stocks involved in this model. Susceptible represents the
This model is developed to simulate how Burnie can deal with a new outbreak of COVID-19 considering health and economic outcomes. The time limit of the simulation is 100 days when a stable circumstance is reached. 

Stocks
There are four stocks involved in this model. Susceptible represents the number of people that potentially could be infected. Infected refers to the number of people infected at the moment. Recovered means the number of people that has been cured, but it could turn into susceptible given a specific period of time since the immunity does not seem everlasting. Death case refers to the total number of death since the beginning of outbreak. The sum of these four stocks add up to the initial population of the town.

Variables
There are four variables in grey colour that indicate rates or factors of infection, recovery, death or economic outcomes. They usually cannot be accurately identified until it happen, therefore they can be modified by the user to adjust for a better simulation outcome.

Immunity loss rate seems to be less relevant in this case because it is usually unsure and varies for individuals, therefore it is fixed in this model.

The most interesting variable in green represents the government policy, which in this situation should be shifting the financial resources to medical resources to control infection rate, reduce death rate and increase recovery rate. It is limited from 0 to 0.8 since a government cannot shift all of the resources. Bigger scale means more resources are shifted. The change of government policy will be well reflected in the economic outcome, users are encouraged to adjust it to see the change.

The economic outcome is the variable that roughly reflects the daily income of the whole town, which cannot be accurate but it does indicate the trend.

Assumptions:
The recovery of the infected won't happen until 30 days later since it is usually a long process. And the start of death will be delayed for 14 days considering the characteristic of the virus.
Economic outcome will be affected by the number of infected since the infected cannot normally perform financial activities.
Immunity effect is fixed at 30 days after recovery.

Interesting Insights:
 In this model it is not hard to find that extreme government policy does not result in the best economic outcome, but the values in-between around 0.5 seems to reach the best financial outcome while the health issues are not compromised. That is why usually the government need to balance health and economic according to the circumstance. 
 

 Modelo epidemiológico simples   SIR: Susceptíveis - Infectados - Recuperados         Clique aqui  para ver um vídeo com a apresentação sobre a construção e uso deste modelo.  É recomendável ver o vídeo num computador de mesa para se poder ver os detalhes do modelo.          Dados iniciais de  infec
Modelo epidemiológico simples
SIR: Susceptíveis - Infectados - Recuperados

Clique aqui para ver um vídeo com a apresentação sobre a construção e uso deste modelo.  É recomendável ver o vídeo num computador de mesa para se poder ver os detalhes do modelo.


Dados iniciais de infectados, recuperados e óbitos para diversos países (incluindo o Brasil) podem ser obtidos aqui neste site.
12 months ago
  Overview:
  

 The
COVID-19 Outbreak in Burnie Tasmania shows the process of COVID-19 outbreak,
the impacts of government policy on both the COVID-19 outbreak and the GDP
growth in Burnie.  

  Assumptions:  

 We set some
variables at fix rates, including the immunity loss rate, recovery rate, de

Overview:

The COVID-19 Outbreak in Burnie Tasmania shows the process of COVID-19 outbreak, the impacts of government policy on both the COVID-19 outbreak and the GDP growth in Burnie.

Assumptions:

We set some variables at fix rates, including the immunity loss rate, recovery rate, death rate, infection rate and case impact rate, as they usually depend on the individual health conditions and social activities.

It should be noticed that we set the rate of recovery, which is 0.7, is higher than that of immunity loss rate, which is 0.5, so, the number of susceptible could be reduced over time.

Adjustments: (please compare the numbers at week 52)

Step 1: Set all the variables at minimum values and simulate

results: Number of Infected – 135; Recovered – 218; Cases – 597; Death – 18,175; GDP – 10,879.

Step 2: Increase the variables of Health Policy, Quarantine, and Travel Restriction to 0.03, others keep the same as step 1, and simulate

results: Number of Infected – 166 (up); Recovered – 249 (up); Cases – 554 (down); Death – 18,077 (down); GDP – 824 (down).

So, the increase of health policy, quarantine and travel restriction will help increase recovery, decrease confirmed cases, decrease death, but also decrease GDP.

Step 3: Increase the variables of Testing Rate to 0.4, others keep the same as step 2, and simulate

results: Number of Infected – 152 (down); Recovered – 243 (down); Cases – 1022 (up); Death – 17,625 (down); GDP – 824 (same).

So, the increase of testing rate will help to increase the confirmed cases.

Step 4: Change GDP Growth Rate to 0.14, Tourism Growth Rate to 0.02, others keep the same as step 3, and simulate

results: Number of Infected – 152 (same); Recovered – 243 (same); Cases – 1022 (same); Death – 17,625 (same); GDP – 6,632 (up).

So, the increase of GDP growth rate and tourism growth rate will helps to improve the GDP in Burnie.

 Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

 Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
This model shows the COVID-19 outbreaks in Burnie and the Government intervention to alleviate the crisis and also how is the intervention affect the economy.    It is assumed that the Government intervention is triggered when the COVID-19 case is equal to or more than 10.      Government interventi
This model shows the COVID-19 outbreaks in Burnie and the Government intervention to alleviate the crisis and also how is the intervention affect the economy.

It is assumed that the Government intervention is triggered when the COVID-19 case is equal to or more than 10. 

Government intervention - lock down the state, suppress the development of COVID-19 effectively. It is related to most of people stay at home to reduce the exposure in public area.
On the other hand, it also bring the economy of Burnie in the recession, as no tourists, no dining out activities and decrease in money spending in the city.
O presente  Insight  engloba diversos tipos de modelos compartimentais. Pra visualizar alguns deles, procure testar os seguintes valores: SI: S=995, I=5, β=0.1 SIS: S=980, I=20, β=0.1 e δ = 0.01 SIR: S=995, I=5, β=0.35 e γ=0.035 SIRS: S=995, I=5, β=0.4, γ=0.2 e μ=0.005 SEIR: S=995, I=5, β=0.5, ω=0.1
O presente Insight engloba diversos tipos de modelos compartimentais.
Pra visualizar alguns deles, procure testar os seguintes valores:
SI: S=995, I=5, β=0.1
SIS: S=980, I=20, β=0.1 e δ = 0.01
SIR: S=995, I=5, β=0.35 e γ=0.035
SIRS: S=995, I=5, β=0.4, γ=0.2 e μ=0.005
SEIR: S=995, I=5, β=0.5, ω=0.1 e γ=0.1
SEIRS: S=995, I=5, β=0.5, ω=0.1, γ=0.1 e μ=0.03.
SIRV:  S=995, I=5, β=0.35, γ=0.035 e ν=0.01

Note que este é um Insight que pode ser modificado para mostrar cada um desses modelos e o usuário deverá tornar alguns fluxo nulos afim de manter apenas as conexões essenciais para cada sistema.
 If no attempt is made to eradicate SARS-CoV-2 it will eventually
become endemic, ineradicable, at a high never-ending cost to world in terms of economic
growth, human health and lives. The current strategy adopted by most
governments is to impose  restrictive
measures when the virus threatens to ov

If no attempt is made to eradicate SARS-CoV-2 it will eventually become endemic, ineradicable, at a high never-ending cost to world in terms of economic growth, human health and lives. The current strategy adopted by most governments is to impose  restrictive measures when the virus threatens to overwhelm hospital services and to relax these restrictions as this danger recedes. This is short-sighted. It cannot eliminate the highly infectious delta variant, which has an estimated R0-value of between 6 & 9. Periodic lockdowns will be hard to avoid in the future.

However, eradication is possible, herd immunity can be achieved quickly worldwide, reducing the R0 permanently to below 1, which will lead to the disappearance of the virus. Critical in achieving this is Ivermectin, a medicine that is cheap,  readily available and can be manufactured by most countries. A recent meta study has shown that Ivermectin, prophylactically employed, can prevent infection with the virus  by 86 % on average – very similar to the efficacy of vaccines. Eradication will require employment of all the instruments shown in the graph: future generations do not have to live with this plague. 

 Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.