This is step 2 in making a climate model based on our insights of how trees actively contribute to the cooling capcacity of the Earth.​  In this step we divide the incoming energy from the sun to the land and to the oceaan.        With Our-Green-Spine we have discovered new insights how trees / fore
This is step 2 in making a climate model based on our insights of how trees actively contribute to the cooling capcacity of the Earth.​

In this step we divide the incoming energy from the sun to the land and to the oceaan.


With Our-Green-Spine we have discovered new insights how trees / forest / green structures are part of the managing system of controlling the temperature of our Earth via their cooling capacity by using water and influencing the water cycle. We want to translate our insights in a climate model. People who to join us please send an email to marcel.planb@gmail.com.
Thanks, Marcel de Berg
 Interplay between wolves eating sheep and farmers killing wolves.

Interplay between wolves eating sheep and farmers killing wolves.

 STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways.   (1) The ratio of actual transpiration to maximum evapotran
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

8 months ago
This is a two-stock (ocean and atmosphere) climate model simulating the behavior of the earth climate from time zero. The initial conditions of the stocks are also set zero, so it demonstrates how long the earth takes to reach the temperature suitable for life.
This is a two-stock (ocean and atmosphere) climate model simulating the behavior of the earth climate from time zero. The initial conditions of the stocks are also set zero, so it demonstrates how long the earth takes to reach the temperature suitable for life.
Eastern oyster growth model calibrated for Long Island Sound Developed and implemented by Joao G. Ferreira and Camille Saurel; growth data from Eva Galimany, Gary Wickfors, and Julie Rose; driver data from Julie Rose and Suzanne Bricker; Culture practice from the REServ team and Tessa Getchis. This
Eastern oyster growth model calibrated for Long Island Sound
Developed and implemented by Joao G. Ferreira and Camille Saurel; growth data from Eva Galimany, Gary Wickfors, and Julie Rose; driver data from Julie Rose and Suzanne Bricker; Culture practice from the REServ team and Tessa Getchis. This model is a workbench for combining ecological and economic components for REServ. Economic component added by Trina Wellman.

This is a one box model for an idealized farm with one million oysters seeded (one hectare @ a stocking density of 100 oysters per square meter)

1. Run WinShell individual growth model for one year with Long Island Sound growth drivers;

2. Determine the scope for growth (in dry tissue weight per day) for oysters centered on the five weight classes)
 
3. Apply a classic population dynamics equation:

dn(s,t)/dt = -d[n(s,t)g(s,t)]/ds - u(s)n(s,t)

s: Weight (g)
t: Time
n: Number of individuals of weight s
g: Scope for growth (g day-1)
u: Mortality rate (day-1)

4. Set mortality at 30% per year, slider allows scenarios from 30% to 80% per year

5. Determine harvestable biomass, i.e. weight class 5, 40-50 g (roughly three inches length)
Working Draft of a model to simulate the effect on ecosystem service values of planting 10 billion oysters in the Chesapeake Bay by the year 2025.
Working Draft of a model to simulate the effect on ecosystem service values of planting 10 billion oysters in the Chesapeake Bay by the year 2025.
The time-variable solution to a step-function change in inflow concentration for an ideal, completely mixed lake.
The time-variable solution to a step-function change in inflow concentration for an ideal, completely mixed lake.
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.  The converter in this file contains precipitation for Phoenix only.
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Phoenix only.
Diagrams on generalized knowledge claims and workflow processes from Magliocca 2018 Global Environmental Change  article
Diagrams on generalized knowledge claims and workflow processes from Magliocca 2018 Global Environmental Change article
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.  The converter in this file contains precipitation for Phoenix only.
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Phoenix only.
My AP Environmental Homework for the Cats Over Borneo Assignment
My AP Environmental Homework for the Cats Over Borneo Assignment
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:  dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)  Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-se
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:

dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)

Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-sectional area (m2); Q: river flow (m3 s-1); x: length of box (m); E: dispersion coefficient (m2 s-1).

For a given length delta x, Adx = V, the box volume. For a set value of Q, the equation becomes:

VdS/dt = QdS - (d(EA)/dx) dS (Eq. 2)

EA/x, i.e. (m2 X m2) / (m s) = E(b), the bulk dispersion coefficient, units in m3 s-1, i.e. a flow, equivalent to Q

At steady state, dS/dt = 0, therefore we can rewrite Eq. 2 for one estuarine box as:

Q(Sr-Se)=E(b)r,e(Sr-Se)-E(b)e,s(Se-Ss) (Eq. 3)

Where Sr: river salinity (=0), Se: mean estuary salinity; Ss: mean ocean salinity

E(b)r,e: dispersion coefficient between river and estuary, and E(b)e,s: dispersion coefficient between the estuary and ocean.

By definition the value of E(b)r,e is zero, otherwise we are not at the head (upstream limit of salt intrusion) of the estuary. Likewise Sr is zero, otherwise we're not in the river. Therefore:

QSe=E(b)e,s(Se-Ss) (Eq. 4)

At steady state

E(b)e,s = QSe/(Se-Ss) (Eq 5)

The longitudinal dispersion simulates the turbulent mixiing of water in the estuary during flood and ebb, which supplies salt water to the estuary on the flood tide, and make the sea a little more brackish on the ebb.

You can use the slider to turn off dispersion (set to zero), and see that if the tidal wave did not mix with the estuary water due to turbulence, the estuary would quickly become a freshwater system.
In Chile,  60% of its population are exposed to levels of Particulate Matter (PM) above international standards . Air Pollution is causing  4,000 premature deaths per year , including health costs over US$8 billion.    The System Dynamics Causal Loop Diagram developed herein shows an initial study o
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
Find the steady state completely mixed model with reaction decay and the three-compartment steady state model with reaction decay of a non-conservative tracer.
Find the steady state completely mixed model with reaction decay and the three-compartment steady state model with reaction decay of a non-conservative tracer.
THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION  The existing global capitalistic growth paradigm is totally flawed  Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a compon
THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)

 Harvested fishery with endogenous investment and ship deployment policy. Ch 9 p345-360 John Morecroft (2007) Strategic Modelling and Business Dynamics. See simpler models at  IM-2990  and  IM-2991

Harvested fishery with endogenous investment and ship deployment policy. Ch 9 p345-360 John Morecroft (2007) Strategic Modelling and Business Dynamics. See simpler models at IM-2990 and IM-2991

The beginning of a systems dynamics model for teaching NRM 320.
The beginning of a systems dynamics model for teaching NRM 320.