Insight diagram
Combining electromobility and renewable energies since 2014.

http://www.amsterdamvehicle2grid.nl/

Clone of Amsterdam V2G simulation 2.0
Insight diagram
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
Clone of Air Pollution Dynamics - Firewood Combustion
Insight diagram
Model created by Scott Fortmann-Roe.  This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.
Clone of Isle Royale: Predator Prey Interactions
5 months ago
Insight diagram
•Average (Status Quo) Case
–Last 30 years of historical EAA data
–Used the past to predict the future
–Represents the status quo case
–Includes the dry portion  and wet portion of AMO cycle
EA model trying scenario of water demand (Status quo scenario)
Insight diagram
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.


Clone of Oyster Growth based on Phytoplankton Biomass
Insight diagram
Primary production model with phytoplankton as a state variable, force by light and nutrients. Model expanded to include bivalves.
PhytOster 3
Insight diagram
Students in ENVS 270 Online at the University of Arizona: please click Clone Insight at the top to make an editable copy of this model.

As initially proposed by Pr. William M White of Cornell University:

http://www.geo.cornell.edu/eas/education/course/descr/EAS302/302_06Lab11.pdf
http://www.eas.cornell.edu/
Global Carbon Cycle - For ENVS 270 Online
Insight diagram
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
Clone of Air Pollution Dynamics - Firewood Combustion
Insight diagram
This model adresses the primary production for phytoplankton growth, based on Steele’s light intensity equation and Michaelis-Menten equation for nutrient limitation.


Primary production of phytoplankton (SIMA2018_G1)
Insight diagram
This model is based off Meadows economic capital with reinforcing growth loop constrained by a renewable resource model.
Tourism Simulator
Insight diagram
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
Clone of Air Pollution Dynamics - Firewood Combustion
Insight diagram
InClassExercise--ExponentialGrowthRabbits
Insight diagram
Polyrhachis identification chart
Not aware of your Polyrhachis identification type, use this to help identify it.

(Not all species listed) (all located on Australia)
Polyrhachis identification chart
Insight diagram
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Insight diagram
This model illustrates predator prey interactions using real-life data of rabbit and fox populations in Chile
Experiment with adjusting the initial number of moose and wolves on the island.
Predator Prey Interactions
Insight diagram

THE 2018 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.
WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

2018 OVERPOPULATION LEADS TO POLLUTION based on Weather & Climate Extreme Loss of Arable Land and Ocean Fertility by Guy Lakeman - The World3+ Model: Forecaster
Insight diagram
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Phoenix only.
Clone of Primitives for Rainwater Harvesting -Phoenix ENVS 270 F21
Insight diagram
Deforestation
Insight diagram
Life and Death
Clone of Mooses & Wolves
Insight diagram
From Schluter et al 2017 article A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017 video. See also Balke and Gilbert 2014 JASSS article How do agents make decisions? (recommended by Kurt Kreuger U of S)
Modelling human behaviour (MoHuB)
Insight diagram
A clone of the first model with the addition of a converter to describe the competition between rabbits for available vegetation based on the relationship between rabbit density and rabbit birth rate
Clone of Group 1 BA Assignment2 MEL
Insight diagram
Verkoppelung der drei Teilmodelle zu einem Gesamtmodell, der "Miniwelt" im Umfang von Bossel.
Eine Modifikation besteht darin, dass ein hohes Konsumniveau wieder zu einer Absenkung der Geburten führt.
Miniwelt nach Bossel, Reiche kriegen weniger Kinder
Insight diagram
European Masters in System Dynamics 2016
New University of Lisbon, Portugal

Simple model to represent oyster individual growth by simulating feeding and metabolism.
EMSD 2016
Insight diagram

The Logistic Map is a polynomial mapping (equivalently, recurrence relation) of degree 2, often cited as an archetypal example of how complex, chaotic behaviour can arise from very simple non-linear dynamical equations. The map was popularized in a seminal 1976 paper by the biologist Robert May, in part as a discrete-time demographic model analogous to the logistic equation first created by Pierre François Verhulst

Mathematically, the logistic map is written

where:

 is a number between zero and one, and represents the ratio of existing population to the maximum possible population at year n, and hence x0 represents the initial ratio of population to max. population (at year 0)r is a positive number, and represents a combined rate for reproduction and starvation. To generate a bifurcation diagram, set 'r base' to 2 and 'r ramp' to 1
To demonstrate sensitivity to initial conditions, try two runs with 'r base' set to 3 and 'Initial X' of 0.5 and 0.501, then look at first ~20 time steps

Clone of The Logistic Map