Business Models

These models and simulations have been tagged “Business”.

Related tagsTechnology

 Model of growth from diffusion from John Morecroft's Strategic Modelling and Business Dynamics Book Ch6 p174-191. A discussion of a bigger model of People's Express is in  http://bit.ly/HdaGy4  for a related You Tube video by John Morecroft on Reflections on System Dynamics and Strategy

Model of growth from diffusion from John Morecroft's Strategic Modelling and Business Dynamics Book Ch6 p174-191. A discussion of a bigger model of People's Express is in http://bit.ly/HdaGy4 for a related You Tube video by John Morecroft on Reflections on System Dynamics and Strategy

 Harvested fishery with endogenous investment and ship deployment policy. Ch 9 p345-360 John Morecroft (2007) Strategic Modelling and Business Dynamics. See simpler models at  IM-2990  and  IM-2991

Harvested fishery with endogenous investment and ship deployment policy. Ch 9 p345-360 John Morecroft (2007) Strategic Modelling and Business Dynamics. See simpler models at IM-2990 and IM-2991

 Causal loop diagram based on Jack  Homer's  Worker burnout: a dynamic model with implications  for prevention and control See  IM-333  for simulation model and IM-641 for  Rich Picture CLD  
 System Dynamics Review 1985 1(1)42-62 
  

Causal loop diagram based on Jack  Homer's  Worker burnout: a dynamic model with implications  for prevention and control See IM-333 for simulation model and IM-641 for Rich Picture CLD

System Dynamics Review 1985 1(1)42-62

 

 Original (more DYNAMO-like) version is here:  http://insightmaker.com/insight/14464        The Simple Retail Sector model from Section 1.7 of  DYNAMO User's Manual  by Alexander L Pugh III, which is adapted from one from  Industrial Dynamics  by Jay Forrester.     http://www.amazon.com/DYNAMO-Manua
Original (more DYNAMO-like) version is here: http://insightmaker.com/insight/14464


The Simple Retail Sector model from Section 1.7 of DYNAMO User's Manual by Alexander L Pugh III, which is adapted from one from Industrial Dynamics by Jay Forrester.

http://www.amazon.com/DYNAMO-Manual-Edition-System-Dynamics/dp/0262660296 (I bought the 5th edition without realising there was a later one, hopefully it's still the same model in there.)
 Dinámica de la gestión de proyectos de I+D para la solución de una oportunidad o una necesidad de la sociedad. Jymmy Saravia

Dinámica de la gestión de proyectos de I+D para la solución de una oportunidad o una necesidad de la sociedad. Jymmy Saravia

 Harvested fishery with endogenous investment and ship deployment policy. Ch 9 p345-360 John Morecroft (2007) Strategic Modelling and Business Dynamics. See simpler models at IM-2990 and IM-2991

Harvested fishery with endogenous investment and ship deployment policy. Ch 9 p345-360 John Morecroft (2007) Strategic Modelling and Business Dynamics. See simpler models at IM-2990 and IM-2991

 Transition Matrix:        G    R    B    P   G  .7  .05   .03  .22      R  .05 .55  .35  .05      B   0    0     1     0      P   0    0     0     1
Transition Matrix:
      G    R    B    P
G  .7  .05   .03  .22

R  .05 .55  .35  .05

B   0    0     1     0

P   0    0     0     1
 Multi-echelon inventory optimization (sounds like a complicated phrase!) looks at the way we are placing the inventory buffers in the supply chain. The traditional practice has been to compute the safety stock looking at the lead times and the standard deviation of the demand at each node of the su
Multi-echelon inventory optimization (sounds like a complicated phrase!) looks at the way we are placing the inventory buffers in the supply chain. The traditional practice has been to compute the safety stock looking at the lead times and the standard deviation of the demand at each node of the supply chain. The so called classical formula computes safety stock at each node as Safety Stock = Z value of the service level* standard deviation * square root (Lead time). Does it sound complicated? It is not. It is only saying, if you know how much of the variability is there from your average, keep some 'x' times of that variability so that you are well covered. It is just the maths in arriving at it that looks a bit daunting. 

While we all computed safety stock with the above formula and maintained it at each node of the supply chain, the recent theory says, you can do better than that when you see the whole chain holistically. 

Let us say your network is plant->stocking point-> Distributor-> Retailer. You can do the above safety stock computation for 95% service level at each of the nodes (classical way of doing it) or compute it holistically. This simulation is to demonstrate how multi-echelon provides better service level & lower inventory.  The network has only one stocking point/one distributor/one retailer and the same demand & variability propagates up the supply chain. For a mean demand of 100 and standard deviation of 30 and a lead time of 1, the stock at each node works out to be 149 units (cycle stock + safety stock) for a 95% service level. You can start with 149 units at each level as per the classical formula and see the product shortage. Then, reduce the safety stock at the stocking point and the distributor levels to see the impact on the service level. If it does not get impacted, it means, you can actually manage with lesser inventory than your classical calculations. 

That's what your multi-echelon inventory optimization calculations do. They reduce the inventory (compared to classical computations) without impacting your service levels. 

Hint: Try with the safety stocks at distributor (SS_Distributor) and stocking point (SS_Stocking Point) as 149 each. Check the number of stock outs in the simulation. Now, increase the safety stock at the upper node (SS_stocking point) slowly upto 160. Correspondingly keep decreasing the safety stock at the distributor (SS_Distributor). You will see that for the same #stock outs, by increasing a little inventory at the upper node, you can reduce more inventory at the lower node.
  ​Purpose  Enables the different components in the 5 capability model in a visual manner for Enterprise and Business Architecture stakeholders.     5 Capability Model  The 5 capability model has many stock and flow children which each organization will need to model based on their current state.  

​Purpose
Enables the different components in the 5 capability model in a visual manner for Enterprise and Business Architecture stakeholders.  

5 Capability Model
The 5 capability model has many stock and flow children which each organization will need to model based on their current state.  

Semantic

Getting terms to align to the generic objects can be a trying task, unless you simply list the stakeholders "semantic" term below the stakeholder in the presentation layer by order shown in the business process management section above the capability management group.  



10 months ago
This causal loop diagram is the first step in looking at the relationship between business analysis performance and organizational performance. Over time it will be extended by IIBA R&I to form a simulation.    © International Institute of Business Analysis
This causal loop diagram is the first step in looking at the relationship between business analysis performance and organizational performance. Over time it will be extended by IIBA R&I to form a simulation.

© International Institute of Business Analysis
This causal loop diagram is the first step in looking at the relationship between business analysis performance and organizational performance. Over time it will be extended by IIBA R&I to form a simulation.    © International Institute of Business Analysis
This causal loop diagram is the first step in looking at the relationship between business analysis performance and organizational performance. Over time it will be extended by IIBA R&I to form a simulation.

© International Institute of Business Analysis
 Based on the model published in Repenning, "Understanding Firefighting in New Product Development," 2001.

Based on the model published in Repenning, "Understanding Firefighting in New Product Development," 2001.

 ​Purpose  Enables the different components in the 5 capability model in a visual manner for Enterprise and Business Architecture stakeholders.      BUSINESS ARCHITECTURE     5 Capability Model  The 5 capability model has many stock and flow children which each organization will need to model based
​Purpose
Enables the different components in the 5 capability model in a visual manner for Enterprise and Business Architecture stakeholders.  


BUSINESS ARCHITECTURE 

5 Capability Model
The 5 capability model has many stock and flow children which each organization will need to model based on their current state.  

  • Aligns to APQC Process Framework
  • Aligns to Principles in ISO 9001, 26000 and 27001 

ENTERPRISE ARCHITECTURE 
Aligns Zachman Framework Enterprise and Business Architecture with Executive and Leaders from a business management level across any organization.  

A method in which to align and benchmark any organization or agency, with the system(s) logic required from Architects in Row 3, to enable Row 4 engineers who need to supply physics. 


Semantic
Getting terms to align to the generic objects can be a trying task, unless you simply list the stakeholders "semantic" term below the stakeholder in the presentation layer by order shown in the business process management section above the capability management group.  



 Bottom-Up Sales Forecasting for Startups     The purpose of this simulation is to demonstrate the implications of forecasting sales without consideration for how much it cost you to acquire a lead and how much you have available to spend. A common mistake in sales forecasting is to define your # of
Bottom-Up Sales Forecasting for Startups

The purpose of this simulation is to demonstrate the implications of forecasting sales without consideration for how much it cost you to acquire a lead and how much you have available to spend. A common mistake in sales forecasting is to define your # of expected sales leads based on your total market size and your assumption regarding the % of that market you can reach. 

This model demonstrates the forecasting impact to defining the # of expect leads based on how much it cost you to acquire a lead and how much you have available to spend. 

Important Variables:
1. [UseLAC?] (set to 1 to use the lead acquisition cost to define your reachable market; use 0 to set the reachable market to equal the total available market size)
2. LAC (should equal what it cost you to acquire a lead)
3. SalesMarketingBudget : how much you have available to spend on customer acquisition

Other Variables:
4. Price : Avg spending amount per new customer
5. Total Available Market : Total available market size
6. Conversion Rate : the % of your target market that will become a lead


This causal loop diagram is the first step in looking at the relationship between business analysis performance and organizational performance. Over time it will be extended by IIBA R&I to form a simulation.    © International Institute of Business Analysis
This causal loop diagram is the first step in looking at the relationship between business analysis performance and organizational performance. Over time it will be extended by IIBA R&I to form a simulation.

© International Institute of Business Analysis
 
 This insights explores the organizational factors influencing strategy implementation and the interrelationship among some of the factors.
  • This insights explores the organizational factors influencing strategy implementation and the interrelationship among some of the factors.
 Bottom-Up Sales Forecasting for Startups     The purpose of this simulation is to demonstrate the implications of forecasting sales without consideration for how much it cost you to acquire a lead and how much you have available to spend. A common mistake in sales forecasting is to define your # of
Bottom-Up Sales Forecasting for Startups

The purpose of this simulation is to demonstrate the implications of forecasting sales without consideration for how much it cost you to acquire a lead and how much you have available to spend. A common mistake in sales forecasting is to define your # of expected sales leads based on your total market size and your assumption regarding the % of that market you can reach. 

This model demonstrates the forecasting impact to defining the # of expect leads based on how much it cost you to acquire a lead and how much you have available to spend. 

Important Variables:
1. [UseLAC?] (set to 1 to use the lead acquisition cost to define your reachable market; use 0 to set the reachable market to equal the total available market size)
2. LAC (should equal what it cost you to acquire a lead)
3. SalesMarketingBudget : how much you have available to spend on customer acquisition

Other Variables:
4. Price : Avg spending amount per new customer
5. Total Available Market : Total available market size
6. Conversion Rate : the % of your target market that will become a lead


 
 This insights explores the organizational factors influencing strategy implementation and the interrelationship among some of the factors.
  • This insights explores the organizational factors influencing strategy implementation and the interrelationship among some of the factors.
The Simple Retail Sector model from Section 1.7 of  DYNAMO User's Manual  by Alexander L Pugh III, which is adapted from one from  Industrial Dynamics  by Jay Forrester.     http://www.amazon.com/DYNAMO-Manual-Edition-System-Dynamics/dp/0262660296  (I bought the 5th edition without realising there w
The Simple Retail Sector model from Section 1.7 of DYNAMO User's Manual by Alexander L Pugh III, which is adapted from one from Industrial Dynamics by Jay Forrester.

http://www.amazon.com/DYNAMO-Manual-Edition-System-Dynamics/dp/0262660296 (I bought the 5th edition without realising there was a later one, hopefully it's still the same model in there.)

A tweaked version with slightly more explicit stocks is here: http://insightmaker.com/insight/14467