​Predator-prey
models are the building masses of the bio-and environments as bio
masses are become out of their asset masses. Species contend, advance and
scatter essentially to look for assets to support their battle for their very
presence. Contingent upon their particular settings of uses, they

​Predator-prey models are the building masses of the bio-and environments as bio masses are become out of their asset masses. Species contend, advance and scatter essentially to look for assets to support their battle for their very presence. Contingent upon their particular settings of uses, they can take the types of asset resource-consumer, plant-herbivore, parasite-have, tumor cells- immune structure, vulnerable irresistible collaborations, and so on. They manage the general misfortune win connections and thus may have applications outside of biological systems. At the point when focused connections are painstakingly inspected, they are regularly in actuality a few types of predator-prey communication in simulation. 

 Looking at Lotka-Volterra Model:

The well known Italian mathematician Vito Volterra proposed a differential condition model to clarify the watched increment in predator fish in the Adriatic Sea during World War I. Simultaneously in the United States, the conditions contemplated by Volterra were determined freely by Alfred Lotka (1925) to portray a theoretical synthetic response wherein the concoction fixations waver. The Lotka-Volterra model is the least complex model of predator-prey communications. It depends on direct per capita development rates, which are composed as f=b−py and g=rx−d. 

A detailed explanation of the parameters:

  • The parameter b is the development rate of species x (the prey) without communication with species y (the predators). Prey numbers are reduced by these collaborations: The per capita development rate diminishes (here directly) with expanding y, conceivably getting to be negative. 
  • The parameter p estimates the effect of predation on x˙/x. 
  • The parameter d is the death rate of species y without connection with species x. 
  • The term rx means the net rate of development of the predator population in light of the size of the prey population.

Reference:

http://www.scholarpedia.org/article/Predator-prey_model

 

From Fig 12.2 p317 Pigliucci M and Muller GB (2010) Evolution: The Extended Synthesis
From Fig 12.2 p317 Pigliucci M and Muller GB (2010) Evolution: The Extended Synthesis
Launchpad about reorganisation based on Bogdanov's Tektology general theory of organization, perceptual control theory, personal history and current concerns, linked to the modern (or historical) organization of biology and political economy. 
Launchpad about reorganisation based on Bogdanov's Tektology general theory of organization, perceptual control theory, personal history and current concerns, linked to the modern (or historical) organization of biology and political economy. 
2 months ago
 FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION     BEWARE pushing increased growth blows the system!    (governments are trying to push growth on already unstable systems !)  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of th
FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION 
 BEWARE pushing increased growth blows the system!
(governments are trying to push growth on already unstable systems !)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Small Intestine example from Progress in Biophysics & Molecular Biology Special Issue 2016 From the century of the genome to the century of the organism: New theoretical approaches  paper  on organization. Compare with Bogdanov (click tag)
Small Intestine example from Progress in Biophysics & Molecular Biology Special Issue 2016 From the century of the genome to the century of the organism: New theoretical approaches paper on organization. Compare with Bogdanov (click tag)
10 months ago
WIP Based on Carlos E Perez twitter diagrams and Paul Cisek 2019  paper  and talks including explore and exploit behaviours
WIP Based on Carlos E Perez twitter diagrams and Paul Cisek 2019 paper and talks including explore and exploit behaviours
Evolutionary Accretion Model of Human Memory mostly from Murray 2016/7  Book  and 2019 Ferbinteanu Memory Theory  article  See also Brain systems modelling 2021  article
Evolutionary Accretion Model of Human Memory mostly from Murray 2016/7 Book and 2019 Ferbinteanu Memory Theory article See also Brain systems modelling 2021 article
OVERSHOOT GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunb
OVERSHOOT GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

 Description:    A simple model for breeding plants from generation to generation in 3 different locations, with one "yield" variable (e.g. height) and 4 combinations of plants from the parents. Simulation tracks the frequencies of each combination in each generation as well as the overall average h
Description:

A simple model for breeding plants from generation to generation in 3 different locations, with one "yield" variable (e.g. height) and 4 combinations of plants from the parents. Simulation tracks the frequencies of each combination in each generation as well as the overall average height by generation.

The slider will select from 1 of 5 presets that changes the characteristics of each location's plants.

The graph of A1A2 Proportion represents both A1A2 and A2A1 since they are interchangeable.

Components of behaviour organised into domains, from NIMH Research Domain Criteria  website  and BMC  paper  and 2013  series  on current controversies in psychiatry.
Components of behaviour organised into domains, from NIMH Research Domain Criteria website and BMC paper and 2013 series on current controversies in psychiatry.
3 11 months ago
 From Fig 16.3  p429 Pigliucci M and Muller GB (2010) Evolution: The Extended Synthesis

From Fig 16.3  p429 Pigliucci M and Muller GB (2010) Evolution: The Extended Synthesis

THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION  The existing global capitalistic growth paradigm is totally flawed  Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a compon
THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)

Simulation of MTBF with controls   F(t) = 1 - e ^ -λt   Where    • F(t) is the probability of failure    • λ is the failure rate in 1/time unit (1/h, for example)   • t is the observed service life (h, for example)  The inverse curve is the trust time On the right the increase in failures brings its
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
With this model, you can set Keq and initial concentrations of reactants and products,
With this model, you can set Keq and initial concentrations of reactants and products,