Regulation of resource allocation to production in response to inventory adequacy and delivery delay. A non-price-mediated resource allocation system. From Sterman JD Business Dynamics p172 Fig 5-27

Regulation of resource allocation to production in response to inventory adequacy and delivery delay. A non-price-mediated resource allocation system. From Sterman JD Business Dynamics p172 Fig 5-27

 Regulation of resource allocation to service in response to service quality. A non-price-mediated resource allocation system. From Sterman JD Business Dynamics p172 Fig 5-27

Regulation of resource allocation to service in response to service quality. A non-price-mediated resource allocation system. From Sterman JD Business Dynamics p172 Fig 5-27

From Jay Forrester 1988 killian lectures youtube  video  describing system dynamics at MIT. For Concepts See  IM-185226 . For more detailed biography See Jay Forrester memorial  webpage  For MIT HIstory see  IM-184930
From Jay Forrester 1988 killian lectures youtube video describing system dynamics at MIT. For Concepts See IM-185226. For more detailed biography See Jay Forrester memorial webpage For MIT HIstory see IM-184930
  Overview  The model simulates how logging in with tourism(mountain biking) in Derby Tasmania.   How the model works.   Trees grow, loggers cut them in order to sell them because of demand for Timber.  Mountain cyclist depends on satisfaction and expectation.  Satisfaction and Expectation depends o
Overview
The model simulates how logging in with tourism(mountain biking) in Derby Tasmania.
How the model works.
Trees grow, loggers cut them in order to sell them because of demand for Timber.
Mountain cyclist depends on satisfaction and expectation.  Satisfaction and Expectation depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  Local Business is influenced by the timber and number of Mountain Cyclist. Employment is influenced by the number of mountain cyclist and logging activity.

Simulating Hyperinflation for 3650 days.  If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here,
Simulating Hyperinflation for 3650 days.

If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here, just the net results.

See blog at http://howfiatdies.blogspot.com for more on hyperinflation, including a hyperinflation FAQ.
Simple tragedy ​of the commons behavior model.
Simple tragedy ​of the commons behavior model.
Investigations into the relationships responsible for the success and failure of nations. This investigation was prompted after reading numerous references on the subject and perceiving that *Why Nations Fail: The Origins of Power, Prosperity, and Poverty* by Acemoglu and Robinson seem to make a gre
Investigations into the relationships responsible for the success and failure of nations. This investigation was prompted after reading numerous references on the subject and perceiving that *Why Nations Fail: The Origins of Power, Prosperity, and Poverty* by Acemoglu and Robinson seem to make a great deal of sense.

Original model done for The Perspectives Project though recast into Kumu.
  Goodwin Model:   This is a basic version of the Goodwin Model based on Kaoru Yamagushi (2013),  Money and Macroeconomic Dynamics , Chapter 4.5 ( link )     Equilibrium conditions:   Labor Supply  = 100  Devation from the equilibrium conditions generates growth cycles.
Goodwin Model:
This is a basic version of the Goodwin Model based on Kaoru Yamagushi (2013), Money and Macroeconomic Dynamics, Chapter 4.5 (link)

Equilibrium conditions:
  • Labor Supply = 100
Devation from the equilibrium conditions generates growth cycles.
This model shows the structure and operation of a simple economy. It can represent economic systems at different levels of abstraction (e.g. a single good, a group of goods, multiple groups, & an "economy.")  In summary, lower rates of consumption (based on production) result in higher rates of
This model shows the structure and operation of a simple economy. It can represent economic systems at different levels of abstraction (e.g. a single good, a group of goods, multiple groups, & an "economy.")

In summary, lower rates of consumption (based on production) result in higher rates of production and consumption in the long-run. Rates of consumption over 100% of production will diminish the savings stock and eventually cause rates of production and consumption to fall.
The housing market is heavily dependent on two main factors; supply and demand. Both play a major role in determining an equilibrium price for both sellers and buyers in the real estate market.     Residents, or the general population of individuals, place significant reliance on financial instituti
The housing market is heavily dependent on two main factors; supply and demand. Both play a major role in determining an equilibrium price for both sellers and buyers in the real estate market. 

Residents, or the general population of individuals, place significant reliance on financial institutions to provide sources of capital i.e mortgages, to fund their purchases of homes. The rate of interest charged by these organisations in turn gives buyers (consumers) purchasing power, creating demand. 

Supply is made up of the number of houses in the market, and consequently, of these, the number of houses which are up for sale. As the prices of houses for sale increases, the demand for purchase of these properties decreases. Conversely, the lower price, the higher the demand. Once the market reaches an equilibrium point, to which buyers and sellers form an agreement, houses are sold accordingly. An underlying factor to consider is the cost of construction, which impacts producers, or suppliers in this instance, and thus the number of homes for sale, and the expected profit sellers hope to achieve. 

The simulated graph highlights the common scenario within the housing market, to which we see that as price increases, the total number for houses for sale decreases, generating an opposite slope to the price. As the price for houses increases, the demand for the houses decreases and vice versa. The equilibrium is evident at time 14 whereby the price of houses and the number of houses for sale overlaps which in turn creates a market to which both buyers and sellers are happy.
A simple budget planning system.  What additional complexities can you add?
A simple budget planning system.  What additional complexities can you add?
  Goodwin Model:   This is a basic version of the Goodwin Model based on Kaoru Yamagushi (2013),  Money and Macroeconomic Dynamics , Chapter 4.5 ( link )     Equilibrium conditions:   Labor Supply  = 100  Devation from the equilibrium conditions generates growth cycles.
Goodwin Model:
This is a basic version of the Goodwin Model based on Kaoru Yamagushi (2013), Money and Macroeconomic Dynamics, Chapter 4.5 (link)

Equilibrium conditions:
  • Labor Supply = 100
Devation from the equilibrium conditions generates growth cycles.
This is the summary of lecture ​1 of my Course about StartUps. It's an intro to the startup ecosystem and the different stakeholders that can interact with your new enterprise at different stages of its evolution and growth. -version 1 - for info or suggestions: bonato.pietroz@gmail.com
This is the summary of lecture ​1 of my Course about StartUps. It's an intro to the startup ecosystem and the different stakeholders that can interact with your new enterprise at different stages of its evolution and growth. -version 1 - for info or suggestions: bonato.pietroz@gmail.com
  ​Climate Sector Boundary Diagram By Guy Lakeman    Climate, Weather, Ecology, Economics, Population, Welfare, Energy, Policy, CO2, Carbon Cycle, GHG (green house gasses, combined effects)      As general population is composed of 85% with an education level of a 12 grader or less (a 17 year old),
​Climate Sector Boundary Diagram By Guy Lakeman
 Climate, Weather, Ecology, Economics, Population, Welfare, Energy, Policy, CO2, Carbon Cycle, GHG (green house gasses, combined effects)

As general population is composed of 85% with an education level of a 12 grader or less (a 17 year old), a simple block of components concerning the health of the planet needs to be broken down into simple blocks.
Perhaps this picture will show the basics on which to vote for a sustained healthy future
Democracy is only as good as the ability of the voters to FULLY understand the implications of the policies on which they vote., both context and the various perspectives.   National voting of unqualified voters on specific policy issues is the sign of corrupt manipulation.

This model shows the structure and operation of a simple economy. It can represent economic systems at different levels of abstraction (e.g. a single good, a group of goods, multiple groups, & an "economy.")  This model has one significant difference from Model 4. The  fractional consumption rat
This model shows the structure and operation of a simple economy. It can represent economic systems at different levels of abstraction (e.g. a single good, a group of goods, multiple groups, & an "economy.")

This model has one significant difference from Model 4. The fractional consumption rate table serves the purpose of demonstrating the effects of changes in the fractional consumption rate (or the converse the fractional rate of saving) from 100% to less-than 100% to more-than 100%.

It demonstrates dramatically the effects of significant changes in consumption rates.
   THE 2020 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.  WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER R

THE 2020 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.
WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

This model shows the operation of a simple economy. It demonstrates the effect of changes in the fractional rate of consumption (or the converse the fractional rate of saving.)  In summary, lower rates of consumption (based on production) result in higher rates of production and consumption in the l
This model shows the operation of a simple economy. It demonstrates the effect of changes in the fractional rate of consumption (or the converse the fractional rate of saving.)

In summary, lower rates of consumption (based on production) result in higher rates of production and consumption in the long-run.
 Cutbacks can have a counterintuitive effect. The government knows precisely how much it custs in spending. However, it cannot know the extent to which tax revenues shrink in a non-linear complex economic system as the economy contracts. In addition, the treasury has to spend more as automatic stabi

Cutbacks can have a counterintuitive effect. The government knows precisely how much it custs in spending. However, it cannot know the extent to which tax revenues shrink in a non-linear complex economic system as the economy contracts. In addition, the treasury has to spend more as automatic stabilizers activate and payments are made to an increasing number of unemployed workers. The effect of this is that initially the deficit shrinks, but later it rises as tax revenues fall short of expectations and more spending takes place. The ironic part is that often the very indicator that promted austerity measurs, the defcit to GDP ratio, becomes worse than it was at the outset. We could observe this in Spain and Portugal where planned deficits have been repeatedly missed, as austerity measures  (fiscal cutbacks) were introduced to deal with the effects of  the 2008 financial crisis.

Clone of Pesticide Use in Central America for Lab work        This model is an attempt to simulate what is commonly referred to as the “pesticide treadmill” in agriculture and how it played out in the cotton industry in Central America after the Second World War until around the 1990s.     The cotto
Clone of Pesticide Use in Central America for Lab work


This model is an attempt to simulate what is commonly referred to as the “pesticide treadmill” in agriculture and how it played out in the cotton industry in Central America after the Second World War until around the 1990s.

The cotton industry expanded dramatically in Central America after WW2, increasing from 20,000 hectares to 463,000 in the late 1970s. This expansion was accompanied by a huge increase in industrial pesticide application which would eventually become the downfall of the industry.

The primary pest for cotton production, bol weevil, became increasingly resistant to chemical pesticides as they were applied each year. The application of pesticides also caused new pests to appear, such as leafworms, cotton aphids and whitefly, which in turn further fuelled increased application of pesticides. 

The treadmill resulted in massive increases in pesticide applications: in the early years they were only applied a few times per season, but this application rose to up to 40 applications per season by the 1970s; accounting for over 50% of the costs of production in some regions. 

The skyrocketing costs associated with increasing pesticide use were one of the key factors that led to the dramatic decline of the cotton industry in Central America: decreasing from its peak in the 1970s to less than 100,000 hectares in the 1990s. “In its wake, economic ruin and environmental devastation were left” as once thriving towns became ghost towns, and once fertile soils were wasted, eroded and abandoned (Lappe, 1998). 

Sources: Douglas L. Murray (1994), Cultivating Crisis: The Human Cost of Pesticides in Latin America, pp35-41; Francis Moore Lappe et al (1998), World Hunger: 12 Myths, 2nd Edition, pp54-55.

Very basic stock-flow diagram of simple interest with table and graph output in interest, bank account and savings development per year. Initial deposit, interest rate, yearly deposit and withdrawal, and initial balance bank account can all be modified in Dutch.
Very basic stock-flow diagram of simple interest with table and graph output in interest, bank account and savings development per year. Initial deposit, interest rate, yearly deposit and withdrawal, and initial balance bank account can all be modified in Dutch.
Based on the Market and Price simulation model in System Zoo 3. Used in the System Thinking section of Regenerative Economics.
Based on the Market and Price simulation model in System Zoo 3. Used in the System Thinking section of Regenerative Economics.