From Schluter et al 2017  article  A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017  video .   See also Balke and Gilbert 2014 JASSS  article  How do agents make decisions? (recommended by Kurt Kreuger U of S)
From Schluter et al 2017 article A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017 video. See also Balke and Gilbert 2014 JASSS article How do agents make decisions? (recommended by Kurt Kreuger U of S)
Fig.5 Generic resource allocation structure from Khalil Saeed and Oleg Pavlov's Dynastic Cycles SD model  paper   See also  the SD  Model Insight
Fig.5 Generic resource allocation structure from Khalil Saeed and Oleg Pavlov's Dynastic Cycles SD model paper  See also  the SD Model Insight
  Goodwin Model:   This is a basic version of the Goodwin Model based on Kaoru Yamagushi (2013),  Money and Macroeconomic Dynamics , Chapter 4.5 ( link )     Equilibrium conditions:   Labor Supply  = 100  Devation from the equilibrium conditions generates growth cycles.
Goodwin Model:
This is a basic version of the Goodwin Model based on Kaoru Yamagushi (2013), Money and Macroeconomic Dynamics, Chapter 4.5 (link)

Equilibrium conditions:
  • Labor Supply = 100
Devation from the equilibrium conditions generates growth cycles.
WIP Overview model structures of Khalid Saeed's 2014  WPI paper  Jay
Forrester’s Disruptive Models of Economic Behavior  See also General SD and Macroeconomics CLDs  IM-168865
WIP Overview model structures of Khalid Saeed's 2014 WPI paper Jay Forrester’s Disruptive Models of Economic Behavior  See also General SD and Macroeconomics CLDs IM-168865
Based on the Market and Price simulation model in System Zoo 3.
Based on the Market and Price simulation model in System Zoo 3.
Clone of Pesticide Use in Central America for Lab work        This model is an attempt to simulate what is commonly referred to as the “pesticide treadmill” in agriculture and how it played out in the cotton industry in Central America after the Second World War until around the 1990s.     The cotto
Clone of Pesticide Use in Central America for Lab work


This model is an attempt to simulate what is commonly referred to as the “pesticide treadmill” in agriculture and how it played out in the cotton industry in Central America after the Second World War until around the 1990s.

The cotton industry expanded dramatically in Central America after WW2, increasing from 20,000 hectares to 463,000 in the late 1970s. This expansion was accompanied by a huge increase in industrial pesticide application which would eventually become the downfall of the industry.

The primary pest for cotton production, bol weevil, became increasingly resistant to chemical pesticides as they were applied each year. The application of pesticides also caused new pests to appear, such as leafworms, cotton aphids and whitefly, which in turn further fuelled increased application of pesticides. 

The treadmill resulted in massive increases in pesticide applications: in the early years they were only applied a few times per season, but this application rose to up to 40 applications per season by the 1970s; accounting for over 50% of the costs of production in some regions. 

The skyrocketing costs associated with increasing pesticide use were one of the key factors that led to the dramatic decline of the cotton industry in Central America: decreasing from its peak in the 1970s to less than 100,000 hectares in the 1990s. “In its wake, economic ruin and environmental devastation were left” as once thriving towns became ghost towns, and once fertile soils were wasted, eroded and abandoned (Lappe, 1998). 

Sources: Douglas L. Murray (1994), Cultivating Crisis: The Human Cost of Pesticides in Latin America, pp35-41; Francis Moore Lappe et al (1998), World Hunger: 12 Myths, 2nd Edition, pp54-55.

Jay Forrester's "Market Growth as Influenced by Capital Investment" model as rebuilt by Eric Stiens
Jay Forrester's "Market Growth as Influenced by Capital Investment" model as rebuilt by Eric Stiens
 I propose we grow this sim model (or similar) over time to help ourselves better understand the opposing investment and austerity strategies now being advocated for the U.S. government. The hope is to build as simple a model as possible that subsumes the major underlying feedback loops that probabl

I propose we grow this sim model (or similar) over time to help ourselves better understand the opposing investment and austerity strategies now being advocated for the U.S. government. The hope is to build as simple a model as possible that subsumes the major underlying feedback loops that probably exist in the mental models of proponents of each of these positions. Starting this model was inspired by this Investment vs. Austerity discussion http://www.linkedin.com/groups/Investment-vs-Austerity-How-can-4582801.S.157876413

This model compares direct exchange prices to money prices. It demonstrates the distortion that monetary expansion or contraction has on the information contained in monetary pricing.
This model compares direct exchange prices to money prices. It demonstrates the distortion that monetary expansion or contraction has on the information contained in monetary pricing.
This is a simplification of the Austerity vs Prosperity model in the hope that it will be easier to understand. @ LinkedIn ,  Twitter ,  YouTube
This is a simplification of the Austerity vs Prosperity model in the hope that it will be easier to understand.
This model shows the operation of an extremely simple economy. The system produces and consumes each item (or good) at a fixed rate.  When production exceeds consumption, consumer goods accumulate in stocks. Trading may occur between actors in this system. That will not, however, affect the quantiti
This model shows the operation of an extremely simple economy. The system produces and consumes each item (or good) at a fixed rate.

When production exceeds consumption, consumer goods accumulate in stocks. Trading may occur between actors in this system. That will not, however, affect the quantities of the stocks of goods. It only affects ownership (not a concern of this model.)
Implementation of a DSGE Model solved in a Macroeconomics class by Harald Uhlig ( link ), using Rational Expectations, in this case, the Hansens Real Business Cycle Model. It shows the capacity of implementing Dynamic Stochastic General Equilibrium Model Analysis using System Dynamics.
Implementation of a DSGE Model solved in a Macroeconomics class by Harald Uhlig (link), using Rational Expectations, in this case, the Hansens Real Business Cycle Model.
It shows the capacity of implementing Dynamic Stochastic General Equilibrium Model Analysis using System Dynamics.
Unfortunately, this model only produces the illusion of functioning, but I did manage to get it to give me the graph. However, because of the use of flows, if you change the time step to and the simulation length to anything other than the same numbers, you'll find the graph showing something that l
Unfortunately, this model only produces the illusion of functioning, but I did manage to get it to give me the graph. However, because of the use of flows, if you change the time step to and the simulation length to anything other than the same numbers, you'll find the graph showing something that looks more exponential. This is due to the function referencing itself in regards to time, so inevitably each time consumption grows it changes the outcome on the other side of the equation. Still, this is a convincing mock up. I added a "45 degree" line so that one could conceivably see (and also change) the difference made by altering the level of autonomous consumption.
WIP replication of Khalid Saeed's draft paper presented by the Economics chapter of the SD Society in Sept 2019  youtube video
WIP replication of Khalid Saeed's draft paper presented by the Economics chapter of the SD Society in Sept 2019 youtube video
WIP Based on Steve Keen's Inaugural Kingston Lecture Youtube  video  slides models and data all at his  blog
WIP Based on Steve Keen's Inaugural Kingston Lecture Youtube video slides models and data all at his blog
Circular equations WIP for Runy.    Added several versions of the model. Added a flow to make C increase. Added a factor to be able to change the value 0.5. 
Circular equations WIP for Runy.

Added several versions of the model. Added a flow to make C increase. Added a factor to be able to change the value 0.5. 
 FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION     BEWARE pushing increased growth blows the system!    (governments are trying to push growth on already unstable systems !)  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of th
FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION 
 BEWARE pushing increased growth blows the system!
(governments are trying to push growth on already unstable systems !)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

During the 'big recession' many governments have
deliberately repressed salaries, usually via structural reforms, in order to
gain competitivity. However, repression of salaries increases inequality,
social discontent and often has counterintuitive effects. Salaries are a cost
for companies, but the
During the 'big recession' many governments have deliberately repressed salaries, usually via structural reforms, in order to gain competitivity. However, repression of salaries increases inequality, social discontent and often has counterintuitive effects. Salaries are a cost for companies, but they are also the basis for the demand for the goods and services they offer: people with little income cannot afford them. Scientific studies have shown repeatedly that economic growth generated via salary increases does not endanger the creation of employment, but rather reinforces it. In most countries, the 'positive effect of salary increases' eclipses any possible negative effects on export competitivity and even any detrimental effect on investment. A good example of such a study is the work of ONARAN and OBST on Wage-led Growth in the EU15 Member States (2016).  This positive dynamic has been highlighted in the model by prominent arrows. The policy implications for governments are clear! 

A single resource is used​ with a constant rate and converted into products in use. After a while, these products become unusable because of aging. The recycling of these unusable products is imperfect, thus the amount of not recyclable resource grows (until a better recycling process is invented).
A single resource is used​ with a constant rate and converted into products in use. After a while, these products become unusable because of aging. The recycling of these unusable products is imperfect, thus the amount of not recyclable resource grows (until a better recycling process is invented).
 CLD exposition of Goodwin01 from Steve Keen's August 2019 course on Introduction to Economic Dynamics and Minsky software See  video and powerpoint slides . Based on  IM-2011  Minsky FIH and  IM-168865  MacroEconomics CLDs. See IM-172005 for Simulation

CLD exposition of Goodwin01 from Steve Keen's August 2019 course on Introduction to Economic Dynamics and Minsky software See video and powerpoint slides. Based on IM-2011 Minsky FIH and IM-168865 MacroEconomics CLDs. SeeIM-172005 for Simulation