This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

This is a food web model that shows native populations of organisms in the Hudson River, NY.  I created this as a static model of the food web for my Ecology course through the Museum of Natural History.    This model DOES NOT include the invasive zebra mussels.  I will make a second version that do
This is a food web model that shows native populations of organisms in the Hudson River, NY.  I created this as a static model of the food web for my Ecology course through the Museum of Natural History.

This model DOES NOT include the invasive zebra mussels.  I will make a second version that does include the invasives.
 The body of research and studies generated on the Fryingpan River between the 1940s and the present supports the development of a conceptual model of ecosystem responses to hydrological regime behavior and streamflow management activities. This conceptual model should encourage conversations about

The body of research and studies generated on the Fryingpan River between the 1940s and the present supports the development of a conceptual model of ecosystem responses to hydrological regime behavior and streamflow management activities. This conceptual model should encourage conversations about system behavior and collective understanding among stakeholders regarding connections between specific hydrological regime characteristics affected by management of Ruedi Reservoir and the ecological or biological variables important to local communities. For the sake of simplicity, the model includes mostly unidirectional relationships—feedback loops are exploded to reveal intermediate connections between variables. This approach increases the number of variables represented in the system, perhaps increasing its complexity at first glance. However, the primary benefit to the end user is that the model becomes more readable and explicit in its representation of system behavior. 

 

The conceptual model presented here likely differs by degrees from those held by the various investigators who considered Fryingpan River processes over the previous 80 years. However, it affectively aggregates the ideas main presented by each of those individuals. This model focuses on hydrological and biological variables and does not incorporate the entire diversity of human uses and needs for water from the Fryingpan River (e.g. hydropower production for the City of Aspen, revenue generated in the Town of Basalt by angling activities, etc.).  Rather it attempts to illustrate how the conditional state of important ecosystem characteristics might respond to reservoir management activities that impact typical spring flows, peak flow timing and magnitude, summer flows, fall flows, and winter flows. 

This model illustrates predator prey interactions using real-life data of fox and rabbit populations.
This model illustrates predator prey interactions using real-life data of fox and rabbit populations.
 Allison Zembrodt's Model    This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data f
Allison Zembrodt's Model

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

equations I used in kill rate :

power model - 12*0.1251361120909615*([Moose]/[Wolves])^.44491970277839954*[Wolves]


Kill rate sqrt = 12*(0.0933207+.0873463*([Moose]/[Wolves])^.5)*[Wolves]


Holling Type III - ((0.986198*([Moose]/[Wolves])^2)/ (601.468 +([Moose]/[Wolves])^2))*[Wolves]*12


linear - 12*[Wolves]*(.400271+.00560299([Moose]/[Wolves]))


This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at  https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions  Thanks Scott Fortmann-Roe.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at
https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions
Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,
WolfDeathRateStart,
MooseBirthRateStart,
MooseDeathRateFactorStart,
moStart,
woStart} =
{0.000267409,
0.239821,
0.269755,
0.0113679,
591,
23.};

  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
A collaborative class project with each participant creating an animal/plant sub-model​ to explore the greater population/community dynamics of the Yellowstone ecosystem.
A collaborative class project with each participant creating an animal/plant sub-model​ to explore the greater population/community dynamics of the Yellowstone ecosystem.
 This model is to be used with Mr. Roderick's AP biology activity on population growth. See steveroderick.net for a copy of the activity worksheet.        Use the sliders below to quickly change the initial values of components of the model.
This model is to be used with Mr. Roderick's AP biology activity on population growth. See steveroderick.net for a copy of the activity worksheet.

Use the sliders below to quickly change the initial values of components of the model.
Challenges in sustainability are multilevel. This diagram attempts to summarize levels of self reinforcing destructive dynamics, authors that deal with them, and point of leverage for change.  The base of the crisis is a mechanistic rather than ecological worldview. This mechanistic worldview is bas
Challenges in sustainability are multilevel.
This diagram attempts to summarize levels of self reinforcing destructive dynamics, authors that deal with them, and point of leverage for change.

The base of the crisis is a mechanistic rather than ecological worldview. This mechanistic worldview is based on outdated science that assumed the universe to be a large machine. In a machine there is an inside and an outside. The health of the inside is important for the machine, the outside not. In an ecological view everything is interconnected, there is no clear separation in the future of self and other. All parts influence the health of other parts. To retain health sensitivity and democracy are inherent. The sense of separation from other that keeps the mechanistic worldview dominant is duality. Being cut off from spiritual traditions due to a mechanistic view of science people need access to inter-spirituality to reconnect with the human traditions and tools around connectedness, inner discovery, and compassion. Many books on modern physics and biology deal with the system view implications. "The coming interspiritual age" deals with the need to connect spiritual traditions and science.

At the bottom for the dynamic is an individual a sense of disconnectedness leads to a dependency on spending and having rather than connecting. The connecting has become too painful and dealing with it unpopular in our culture. Joanna Macy deals with this in Active Hope. 

This affluenza and disconnection is worsened by a market that floods one with advertisements aimed at creating needs and a sense of dissatisfaction with that one has.

National economies are structured around maximising GDP which means maximising consumption and financial capital movement. This is at the cost of local economies. These same local economies are needed for balanced happiness as well as for sustainability.

Generally institutions focus on maximising consumption rather than sustaining life support systems. David Korten covers this well.

Power and wealth is confused in this worldview. In striving for wealth only power is striven for in the form of money and monopoly.

Those at the head of large banks and corporations tend to be there because they exemplify this approach. They have few scruples about enforcing this approach onto everyone through wars and disaster capitalism. Naomi Klein and David Estulin documented this.

Power has become so centralized that we need this understanding to be widespread and include many of those in power. Progress of all of these levels are needed to show them and all that another way is possible.
 The purpose of this deer management model is to explore the capacity of wildlife management actions to help us adapt to the effects of climate change.

The purpose of this deer management model is to explore the capacity of wildlife management actions to help us adapt to the effects of climate change.

A simulation model that shows the relationship between the mountain biking trails in derby and the the effect it has on the tourism, 
A simulation model that shows the relationship between the mountain biking trails in derby and the the effect it has on the tourism, 
Clone of:  'Sucesion Forestal' (by Denny S. Fernandez del Viso) for subtropical forest, which in turn is a modification of 'Modeling forest succession in a northeast deciduous forest' (by Owen Stuart).   Translated to English (by Lisa Belyea)
Clone of: 
'Sucesion Forestal' (by Denny S. Fernandez del Viso) for subtropical forest, which in turn is a modification of 'Modeling forest succession in a northeast deciduous forest' (by Owen Stuart).
Translated to English (by Lisa Belyea)
  Overview  The model simulates how logging in with tourism(mountain biking) in Derby Tasmania.   How the model works.   Trees grow, loggers cut them in order to sell them because of demand for Timber.  Mountain cyclist depends on satisfaction and expectation.  Satisfaction and Expectation depends o
Overview
The model simulates how logging in with tourism(mountain biking) in Derby Tasmania.
How the model works.
Trees grow, loggers cut them in order to sell them because of demand for Timber.
Mountain cyclist depends on satisfaction and expectation.  Satisfaction and Expectation depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  Local Business is influenced by the timber and number of Mountain Cyclist. Employment is influenced by the number of mountain cyclist and logging activity.

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

 ​Physical meaning of the equations  The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:        1. The prey population finds ample food at all times.    2. The food supply of the predator population depends entirely on the
​Physical meaning of the equations
The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

1. The prey population finds ample food at all times.
2. The food supply of the predator population depends entirely on the size of the prey population.
3. The rate of change of population is proportional to its size.
4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.
5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

Prey
When multiplied out, the prey equation becomes
dx/dtαx - βxy
 The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  - 

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.